Noise in Communication Systems

The term noise refers to{unwanted electrical signalsithat are always present in elec-
trical systems. The presence of noise superimposed on a signal tends to obscure or
mask the signal{ it limits the receiver's ability to make correct symbol decisions,
and thereby limits the rate of information transmission) Noise arises from a variety
of sources, both man made and natural. The pman-made noise|includes such sources
as spark-plug ignition noise, switching transients, and other radiating electromag-
netic signals. Natural noise includes such elements as the atmosphere, the sun, and
other galactic sources.




 Good engineering design can eliminate much of the noise jor its undesirable
effect through filtering, shielding, the choice of modulation, and the selection of an
optimum receiver site. For example, sensitive radio astronomy measurements are
typically located at remote desert locations, far from man-made noise sources.
However, there is one|natural source of noise, called thermal or Johnson noise, that
cannot be eliminated. Thermal noise [4, 5] is caused by the thermal motion of elec-
trons in all dissipative components—resistors, wires, and so on. The same electrons
that are responsible for electrical conduction are also responsible for thermal noise.




Noise in Communication Systems

* Noise is any unwanted signal, random or
deterministic, that interfere with the desired
signal in a system.

* sources of noise: man made and naturally
occurring.

* There is external noise and internal noise

* The noise is distinguished from interference:
* signal-to-noise ratio (SNR),
* signal-to-interference ratio (SIR)
* signal-to-noise plus interference ratio (SNIR)




Noise in Communication Systems

* Johnson—Nyquist or thermal noise is unavoidable, and generated by the
random thermal motion of charge carriers (usually electrons), inside
an electrical conductor, which happens regardless of any
applied voltage.

 Thermal noise is approximately white, meaning that its power spectral
density is nearly equal throughout the frequency spectrum. The
amplitude of the signal has very nearly a Gaussian probability density
function.

A communication system affected by thermal noise is often modeled as
an additive white Gaussian noise (AWGN) channel.



We can describe thermal noise as a[zero-mcan Gaussign random process| A
Gaussian process n(?) is a random function whose value n at any arbitrary time ¢ 18
statistically characterized by the Gaussian probability density function

r = vz | 5 (5) | A

where| o~ |is the variance of n. The normalized or standardized Gaussian density

function of a zero-mean process is obtained by assuming that o = 1. This normal-
ized pdf is shown sketched in Figure 1.7.
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Figure 1.7 Normalized (o = 1) Gaussian probability density function.



1.5.5.1 White Noise

The primary spectral characteristic of thermal noise is that [its power spectral
density is the same for all frequencies|of interest in most communication systems; in
other words, a thermal noise source emanates an equal amount of noise power per
unit bandwidth at all frequencies—from dc to about 10" Hz. Therefore, a simple
model for thermal noise assumes that its power spectral density G, (f) is flat for all
frequencies, as shown in Figure 1.8a, and is denoted as |

N
G,(f) = 7” watts/hertz (1.42)

where the factor of 2 is included to indicate that G,(f) is a two-sided power spectral density.

The adjective “white” is used in the same sense as it is with white hight,

which contains equal amounts of all frequencies within the visible band of electro-
magnetic radiation.



The autocorrelation function of white noise is given by the inverse Fourier
transform of the noise power spectral density (see Table A.1), denoted as follows:

R(1) = FHG,(f)} = = 8(r) (143)

Thus the autocorrelation of white noise is a delta function weighted by the factor
Ny/2 and occurring al 7= 0, as seen in Figure 1.8b. Note that R,(7) is zero for 7 # 0
that is, any two different samples of white noise, no matter how close together in

time they are taken, are uncorrelated.
The average power P, of white noise is infinite because its bandwidth 1s
infinite. This can be seen by combining Equations (1.19) and (1.42) to yield

P,,=f Ldf = (1.44)




Gn(f) R]I(T)

No/2

0
(a) (b)

Figure 1.8 (a) Power spectral density of white noise. (b) Autocorrelation
function of white noise.



SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

shown in Figure 1.9, can be described either as 4 time-domain signal, x(¢), or by its

Fourier transform, X(f}. The use of time-domain analysis yields the time-domain

output y(r), and in the process, A(r), the characteristic or impulse response| of the
network will be defined. When the input is considered in the frequency domain, we
shall define a|frequency transfer function H(f )| for the system, which will determine

the frequency-domain output Y(f).| The system is assumed to be linear and time

nvariant. [t1s also assumed that there is no stored energy in the system at the time
the mput is applied.

Linear
network

Figure 1.9 Linear system and its x(¢) h(t) y(t)
key parameters. X(f) H(f) Y(f)
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1.6.1 Impulse Response

The linear time invariant system or network illustrated in Figure 1.9 is character-
ized in the time domain by an impulse response A(t), which is the response when
the input is equal to a unit impulse 8(¢); that is,

h(t) = y(1) when x(t) = 8(¢) ' (1.45)

The response of the network to an arbitrary input signal x(¢) is found by the
convolution of x(f) with h(r), expressed as

o

y(t) = x(¢) * h(t) =f x(7) h(t — 1) dr (1.46)

—oe

y(t) = f x(t — 1) h(t)dT

0

Input Output
x(t) = o(t) y(t) = h(t)

1

t | t  Figure 1.10 (a) Input signal x(f) is
a unit impulse function. (b) Output
signal y(f) is the system’s impulse
(a) (b) response h(f).



Noise iIn Communication Systems
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Signal to Noise ratio (SNR)

Q: What is used to “ measure” the effect of noise?

The SNR is defined as the average signal power divided by the
average noise power at a certain point in the system.

S average signal power

SNR = — =

N  average noise power
SNR = -5

PN

SNRdB — PS_dBm — PN_dBm
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Signal to Noise ratio (SNR)

Q: What is the System SNR?

Amplified Signal

P +

Signal P Sj So . .

+ System » Amplified Noise

Noise P +

Ni PNO Additional
Noise from system
P. F So
SNRZ S SN. Ro o

PN

(0

v

Ni
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Signal to Noise ratio (SNR)

Q: What is the System SNR?

P Si F So — GP Si
G =« :
P,. —~
N Py, =GPy,
P,
SNR, = —* SNR, = s O SNR.
By P, GP,+P,

14



Noise Figure

Q: What is the Noise Figure of System?

It is an indication of how much noise the system adds:

P Sj G P So — GPSi
P, P, =GP, +P,
N — SNR, _ GP, + P, o1
SNR, GP,,

NF,; =SNR, ,,—SNR, ,; >0dB

EENG 372: Topic 1: Amplitude Modulation Dr. Sana

12/10/17 Almansoori
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ime Averaged Noise Representation

Q: How is Noise represented ?

 Random noise is usually represented in the form of averages as it is difficult to obtain an
closed form expression for noise.

Suppose n(t) is noise: n(t)

T/2 ////////

n(t)=lim, % [ n(o)dt

—7/2

1. Mean value of noise:

This is referred to as the DC or average of the noise.
T is finite for a good estimate for the noise.
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Time Averaged Noise Representation

Q: How is Noise represented ?

2. Mean Square Value: n(t)

T/2
1

P, =n’(¢)=lim, — [|n@)| at

-T/2

This is the time averaged power of the noise.
The square root of this is called the root mean square (rms)

The average power can be determined using the noise PSD:

0. 0]

Py=n*(0)= [ S,()df
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Time Averaged Noise Representation

Q: How is Noise represented ? 01
o
3. AC component : M MmN A

o () = n(t) — n(0) woW W

This is AC fluctuating component in the Noise signal.

The average power in the AC component is:
1 T/2

P, =c*(t)=lim, — [lo@f dt

-7/2
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Time Averaged Noise Representation

Q: How is Noise represented ?

So the average power in the noise can be written as:

T/2

=1 (r)—hmT%— | ‘n(t)+a(t)‘ dt

—T/2

T/2 T/2

 =n (z)_hmT%— | ‘n(t)‘ dt+11mT_)Oo— [lo@)| at
\ —T/2 } \ —T/2 }
\ \

DC power AC power
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White Noise

Q: What information does the power spectral density of Noise convey?
It shows the frequency components present in the Noise signal.

If all the frequency components have the same power, this is called
white noise

| S (f)="
S, (f) 2

~

v
—h
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Bandlimited White Noise

Q: What is Bandlimited White Noise?

If the system has a bandwidth of B, then the noise in bandlimited white
noise

Tl Ly

P e —————

o
o
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Bandlimited White Noise

Q: How is Bandlimited White Noise transmitted in an LTI system?
Similar to what we have previously:

S.(N=" Ilﬁ‘l' S (=2 H)
LTI >

Py = [S.(OH df

For white Noise:

BURTI
Be, =5 JIHO
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Noise Temperature
* Q: What is the Noise Temperature

Since k and B are constant, then the noise power is fully
specified by T

P, = k|T|B

_available

> |

Constant Constant

Noise Temperature

Exercise: A given amplifier has a 4dB noise figure and a bandwidth of 500kHz, and an input
resistance of 50Q) . Calculate the rms signal input that gives an output signal to noise ratio of unity
when the amplifier is connected to a 50Q) resistor at 290K 23



Noise in Amplifiers

Q: What is the total NF of a cascade of systems? (optical & Satellite com)

For the system shown below the total Noise Factor NF is:

NF,—-1 NF, -1
+ + -

NF = NF, + -
Gl Gl Gz H G.
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1.6.2.1 Random Processes and Linear Systems

If a random process forms the input to a time-invariant linear system, the out-
put will also be a random process. That is, each sample function of the input
process yields a sample function of the output process. The input power spectral
density G y(f) and the output power spectral density G,(f) are related as follows:

Gy(f) = G(f) |H(f)I? (1.53)

Equation (1.53) provides a simple way of finding the power spectral density out of
a time-invariant linear system when the input is a random process.

Signal transmission through linear systems

o | h® | y®
X(f) H(f) Y(f)

Linear system

Y(f)=X(f)H(f)
Gy (f) = Gx(NHIHNI?

— Deterministic signals:
— Random signals:




What is required of a network for it to behave like
output signal from an ideal transmission line may h
with the input, and it may have a different amplitude than the input (just a scale
change), but otherwise it must have no distortion—it must have the same shape as

the input. Therefore, for ideal distortionless transmission, we can describe the out-
put signal as

.

y(t) = Kx(t — ty)

where K and 1, are constants. Taking the Fourier transform of both sides (see
Section A.3.1), we write

Y(f) = KX(f)e "/"

Substituting the expression (1.55) for Y(f) into Equation (1.49), we see that the
required system transfer function for distortionless transmission is

H(f) = Ke~127ft

ave some time delay compared

an ideal transmission linel? The\

(1.54)

(1.55)

(1.56)/

Ideal distortion less transmission:

All the frequency components of the signal not only arrive with
an identical time delay, but also are amplified or attenuated

equally.

y(t) = Kz(t — tg) or H(f) = Ke 127/to
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Figure 1.11 Ideal filter transfer function. (a) Ideal bandpass filter.
(b) Ideal low-pass filter. (c) Ideal high-pass filter.



1.6.3.2 Realizable Filters

The very simplest example of a realizable low-pasé filter 1s made up of resis-
tance (%) and capacitance (C), as shown in Figure 1.13a: it is called an RC filter,
and its transfer function can be expressed as |7]

1 1 " |
Hf) ~ T oerme = 5 —— (1.63)

where B(f) = tan™' 2af9 C. The magnitude characteristic |H(f)| and the phase char-
acteristic 6(f) are plotted in Figures 1.13b and c, respectively. The low-pass filter
bandwidth is defined to be its half-power point; this point is the frequency at which
the output signai power has fallen to one-half of its peak value, or the frequency at
which the magnitude of the output voltage has fallen to 1/V2 of its peak value.

- 1 _ 1
H{) = 1+J27T.fRCIL]'||H”(f )| = V1+(f/ fu)?"

|H(f) |
‘R
O—MWW ——O 1
input ¢ _—% Output ' 0.707 | . Half-power point
O— é -0 i i f
1 0 Wee ]
(a) = 2nRC F= 2nC



Example 1.2 Effect of an Ideal Filter on White Noise

White noise with power spectral density G,(f) = N,/2. shown in Figure 1.8a, forms
the input to the ideal low-pass filter shown in Figure 1.11b. Find the power spectral
density Gy(f) and the autocorrelation function Ry{7) of the output signal.

Solution

GUf) = G(f) [H(f)I?

N el
2 J J M
0 otherwise

The autocorrelation is the inverse Fourier transform of the power spectral density and
is given by (see Table A.1)

sm2nf,T
2nf. 1
= N[, sinc 2f, 7

RY(T) ¢ Nﬂfu

Comparing this result with Equation (1.62). we see that Ry(7) has the same shape as
the impulsc response of the ideal low-pass filter shown in Figure 1.12. In this example
the ideal low-pass filter transforms the autocorrelation function of white noise
(defined by the delta function) into a sine function. After filtering, we no longer have
white noise. The output noise signal will have zero correlation with shifted copies of it-
sclf, only at shifts of = n/2f,, where n is any integer other than zero.



Example 1.3 Effect of an % C Filter on White Noise

White _noisg with spectral density G,(f) = Ny/2, shown in Figure 1.8a, forms the input
to the RC filter shown in Figure 1.13a. Find the power spectral density Gy(f) and the
autocorrelation function Ry(7) of the output signal. |

Solution

GY(f)= n(f)lH(f)lz
Ny 1

" 21+ QufRCOY
Ry(t) = F Gy )}

Using Table A.1, we find that the inverse Fourier transform of G(f) 1s

N " il
R = e (e

As might have been predicted, we no longer have white noise after filtering. The RC
filter transfarms the input autocorrelation function of white noise (defined by the
delta function) into an exponential function. For a narrowband filter (a large RC
product), the output noise will exhibit higher correlation between noise samples of a
fixed time shift than will the output noise from a wideband filter.




