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Unit Rectangular Function
We use the pictorial notation IT(x) for a rectangular pulse of unit height and unit width, centered .
at the origin, as shown in Fig. 3.6a: |

L x| =

O =1 05 x| = (3.16)
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Notice that the rectangular pulse in Fig. 3.6b is the unit rectangular pulse I1(x) expanded
by a factor T and therefore can be expressed as I1(x/7). Observe that the denominator 7 in
[1(x/7) indicates the width of the pulse.

Unit Triangular Function
We use the pictorial notation A (x) for a triangular pulse of unit height and unit width, centered
at the origin, as shown in Fig. 3.7a:

1-25¢ x| <
3.17)
0 [x] >

AR) = [

NS TS

Observe that the pulse in Fig. 3.7b is A(x/7). Observe that here, as for the rectangular pulse,
the denominator t in A(x/t) indicates the pulse width.

Sinc Function sinc(x)
The function sin x/x is the “sine over argument” function denoted by sinc (x).*

* sinc(x) is also denoted by Sa (x) in the literature. Some authors define sinc (x) as

. sinmwx
sinc (x) = ———

Tx
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Figure 3.8
Sinc pulse.
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This function plays an important role in signal processing. We define

sin x

sinc (x) = (3.18)

Inspection of Eq. (3.18) shows that

1. sinc (x) is an even function of x.

2. sinc (x) = 0 when sin x = 0 except at x = 0, where it is indeterminate. This means that
sinc(x) = Ofort = +x,427,437,....

3. Using L’Hoéspital’s rule, we find sinc (0) = 1.

4. sinc (x) is the product of an oscillating signal sin x (of period 27) and a monotonically

decreasing function 1/x . Therefore, sinc (x) exhibits sinusoidal oscillations of petiod 27,
with amplitude decreasing continuously as 1/x.

5. In summary, sinc (x) is an even oscillating function with decreasing amplitude. It has a unit
peak at x = 0 and zero crossings at integer multiples of .

Figure 3.8a shows sinc (x). Observe that sinc (x) = O for values of x that are positive and
negative integral multiples of . Figure 3.8b shows sinc (3w/7). The argument 3w/7 = x
when w = 7m/3 or f = 7/6. Therefore, the first zero of this function occurs at @ = 7 /3

f = 7/6).
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Example 3.2  Find the Fourier transform of g(t) = I1(t/7) (Fig. 3.9a).

Figure 3.9
Rectangular
pulse and its
Fourier spectrum.

{0

=)
|
~

We have

o= [ (2) e

Since [1(¢/7) = 1 for |t] < t/2, and since it is zero for [z| > T/2,

/2 ]
G(f) = f eIl gy
—1/2

B _L(e—j”ff _ gty = 2sin (1)
oS - f
% =1 sinc (nft)

Therefore,

T

1T (L) < 7 sinc (%) =t sinc (nft)

of G(f) shown in Fig. 3.9b.

(3.19)

Recall that sinc (x) = 0 when x = £nm. Hence, sinc (wt/2) = 0 when wt/2 = +nr;
that is, when f = £n/7t (n = 1,2, 3,...), as shown in Fig. 3.9b. Observe that in this case
G(f) happens to be real. Hence, we may convey the spectral information by a single plot

Example 3.3  Find the Fourier transform of the unit impulse signal 8(z).

We use the sampling property of the impulse function [Eq. (2.11)] to obtain
[o.0] . ]
P01 = [ e dr = IO
—0Q

or
S =

(3.20a)

(3.20b)




Figure 3.10
Unit impulse and
its Fourier
spectrum.
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Figure 3.10 shows 8(¢) and its spectrum.
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Exomple 3.4 Find the inverse Fourier transform of 3Q2nf) = %8 ).

Figure 3.11
Constant [dc)
signal and its
Fourier spectrum.

From Eq. (3.9b) and the sampling property of the impulse function,

- 8Q2nf)e ¥ gf = 51; / - 8Qnf)e* ™ d2nf)

Fls@rf)] = /

Lm0 _ 1

2w 21
Therefore,
1
7 = 8(27rf) (3.21a)
or
1 & &) (3.21b)

This shows that the spectrum of a constant signal g (#) = 1is animpulse §(f) = 278(2xf),
as shown in Fig. 3.11.

gH=1 G(H =8

I ——— A

@ ®

The result [Eq. (3.21b)] also could have been anticipated on qualitative grounds. Recall
that the Fourier transform of g (¢) is a spectral representation of g (¢) in terms of everlasting
exponential components of the form &/2"#. Now to represent a constant signal g(1) = 1,
we need a single everlasting exponential ¢/ with f = 0. This results in a spectrum at a
single frequency f = 0. We could also say that g(r) = 1 is a dc signal that has a single
frequency component at f = 0 (dc).
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If an impulse at f = 0 is a spectrum of a dc signal, what does an impulse at f = fy
represent? We shall answer this question in the next example.

Excmple 3.5 Find the inverse Fourier transform of §(f — fp).

We the sampling property of the impulse function to obtain

o0

FAG == [ 8¢ — e af =

Therefore, _
IV — S(F — fo) (3.22a)

This result shows that the spectrum of an everlasting exponential &/270! js a single impulse
at f = fo. We reach the same conclusion by qualitative reasoning. To represent the ever-
lasting exponential ¢/20f | we need a single everlasting exponential ¢/2 with w = 27 f;.
Therefore, the spectrum consists of a single component at frequency f = fp.

From Eg. (3.22a) it follows that

e IR s S(F + fo) (3.22b)

Example 3.6  Find the Fourier transforms of the everlasting sinusoid cos 27fy.

Recall the Euler formula
1 . )
cos 2xfpt = 5(eIZHfol + eJ2mfory

Adding Egs. (3.22a) and (3.22b), and using the preceding formula, we obtain

cos 2refor 4= (8 +fo) + 57 — fo) (3.23)

The spectrum of cos 2mfyt consists of two impulses at fp and —fp in the f-domain, or,
two impulses at twg = £27fp in the w-domain as shown in Fig. 3.12. The result also
follows from qualitative reasoning. An everlasting sinusoid cos wo? can be synthesized by
two everlasting exponentials, ¢/“°* and e/, Therefore, the Fourier spectrum consists
of only two components of frequencies wy and —awy.

Figure 3.12 cos ot
Cosine signal
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i shown in
or —1, depending on whether ¢ IS positive or negative
1 >0
sgn(t) =4{ ¢ =0 (3.29)
-1 t<9
We cannot use iategration to find the transform of sgn (¢) directly. This js because sgn (1)
violates the Dirichlet condition [see E.g. (3.14) and the associated footnote| Speci_ﬁcaﬂy
(3.22a) sgn () is not absolutely integrable. However, the transform can be obtained by considering
impulse Sgnt as a sum of two exponentials, as shown in Fig. 3.13, in the limit as a— ()
1€ ever- ) )
o =—a, a
=27y, sgnt = alg% [e™%u@) - ¢ u(=0)]
3.22b) Figure 3.13
Sign function.
Therefore,
F[sgn(®)] = lim {Fle™u@y) — f[e”’u(—t)]}
3.23) a—0
1 1
=1 _ irs 1 ; )
s B5: al_r)% (a Yot —j27rf) (see pairs 1 and 2 i Table 3.1)
also
:d by

lim ( ~J4nf ) !
= e —— —
1Sists

a0 \ g2 + 471—2!"2 .]71.7 (325)

3.3 SOME PROPERTIES OF THE
FOURIER TRANSFORM
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TABLE 3.1
Short Table of Fourier Transforms
g() G(f)
—at 1
1 e %u(®) atjonf a>0
at, ¢ 1
2 e*u(-t) @ jonf a>0
2a
—alt| N —
3 e a? + (lzn.f)Z a>0
—at N S
4 te % u(t) @ +j27'rf)2 a>0
n ,—at —n___
5 e %u(r) @ +j27tf)”+1 a>0
6 8@ 1
7 1 8
8 of2mfol 8(f —fo)
9 cos 27fyt 0.5[8(¢f +fo) + 8¢ —fo)l
10  sin 27fyt JOS[8(F + fo) — 8(f — fo)]
1 S
11 u@® 78(f)+j2nf
12 sgnt 1—2—77
1 j2nf
13 cos2mfyt u(t) Zl[s(f =S +8¢f +fo)+ (2”f0)22_f(2”f)2
. Aoere oo . “me
14 sin27fpt u(t) 4j[6(f fo) = 8(F +fol+ nfo)? — @nf)?
15 e~ sin 27 fyr u() 2nfo a>0
(a +j2rf)? + dnff
16 e~ cos2 A L 0
e~ H cos2mfor u(t) @2 + 47r2f02 a>
17 IT (%) T sinc (mft)
18 2Bsinc (27 Bt) I1 ({—B>
t T gnc? (T
19 A(r) 5 sine ( 2 )
2 £
20 Bsinc” (wBt) A ( 23)
2 YR o8t —nT) fo X o3 —nfo) =17

22 ot'/20° o /Ame—2onf)?

3.3.1 Time-Frequency Duality

Equations (3.9) show an interesting fact: the direct and the inverse transform operations are
remarkably similar. These operations, required to go from g(¢) to G(f) and then from G(f)
to g(t), are shown graphically in Fig. 3.14. The only minor difference between these two0
operations lies in the opposite signs used in their exponential indices.
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g@) G

This similarity has far-reaching consequences in the study of Fourier transforms. It is the
basis of the so-called duality of time and frequency. The duality principle may be compared
with a photograph and its negative. A photograph can be obtained Jrom its negative, and
by using an identical procedure, the negative can be obtained Jrom the photograph. For any
result or relationship between g(¢) and G(f), there exists a dual result or relationship, obtained
by interchanging the roles of g(¢) and G(f) in the original result (along with some minor
modifications arising because of the factor 27 and a sign change). For example, the time-
shifting property, to be proved later, states that if g(t) & G(f), then

8t — 1) <= G(f)e 72"/ |
The dual of this property (the frequency-shifting property) states that
g™ = G(f - f) |

Observe the role reversal of time and frequency in these two equations (with the minor differ- [

ence of the sign change in the exponential index). The value of this principle lies in the fact

that whenever we derive any result, we can be sure that it has a dual. This knowledge can give

valuable insights about many unsuspected properties or results in signal processing. |i
The properties of the Fourier transform are useful not only in deriving the direct and |

the inverse transforms of many functions, but also in obtaining several valuable results in il

signal processing. The reader should not fail to observe the ever-present duality in this dis- ,

cussion. We begin with the duality property, which is one of the consequences of the duality |

principle.

3.3.2 Duality Property |
The duality property states that if |
g) &= G()

then
G() = g(=f) (3.26)
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The duality property states that if the Fourier transform of g(¢) is G(f) then the Fourier
transform of G(t), with f replaced by ¢, is the g(—f) which is the original time domain signal
with ¢ replaced by —f.

Proof: From Eq. (3.9b),

g(t) = f - G(x)e/ ™ gx

—00
Hence,
w 1y
g(—) = / G(x)e 77 dx
-0
Changing ¢ to f yields Eq. (3.26). |

Exomple 3.8 In this example we shall apply the duality property [Eq. (3.26)] to the pair in Fig. 3.15a.

Figure 3.15 8
Duality property I
of the Fourier

transform.
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From Eq. (3.19) we have
t
IT (-—) <= tsinc (f 1) (3.27a)
T
t
I1 (—) < asinc (fa) (3.27b)
o ——
S—— G(f)

&)
Also G(?) is the same as G(f) with f replaced by ¢, and g(—f) is the same as g(¢) with ¢
replaced by —f. Therefore, the duality property (3.26) yields

asinc (mat) < I1 (—i) =TI (£> (3.28a)
—_— o o
G ——

g(=f)
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Substituting v = 27w «, we obtain

¢ sine (%t) e 2 I (zif) (3.28b)

T

In Eq. (3.8) we used the fact that IT (=) = I (¢) because TI(¢) is an even function. Figure
3.15b shows this pair graphically. Observe the interchange of the roles of ¢ and 27f (with
the minor adjustment of the factor 27). This result appears as pair 18 in Table 3.1 {(with
/2 =W).

As an interesting exercise, generate a dual of every pair in Table 3.1 by applying the duality
property.

3.3.3 Time-Scaling Property

If
g(t) <= G(f)
then, for any real constant a,
1
g(a) = —c (L . (329)
lal = \a

Proof: For a positive real constant a,

R R 2 swertion g 2 Lo (’f)

s a

Similarly, it can be shown that if a < 0,

glat) %IG (J:)

a

Hence follows Eq. (3.29). |

Significance of the Time-Scaling Property

The function g(ar) represents the function g(1) compressed in time by a factor a (Ja| > 1).
Similarly, a function G(f /a) represents the function G(f) expanded in frequency by the same
factora. The time-scaling property states that time compression of a signal results in its spectral
expansion, and time expansion of the signal results in its spectral compression. Intuitively,
compression in time by a factor ¢ means that the signal is varying more rapidly by the
same factor. To synthesize such a signal, the frequencies of its sinusoidal components must
be increased by the factor a, implyin g that its frequency spectrum is expanded by the factor
a. Similarly, a signal expanded in time varies more slowly; hence, the frequencies of its
components are lowered, implying that its frequency spectrum is compressed. For instance,
the signal cos 4z fyt is the same as the signal cos 27fyt time-compressed by a factor of 2.
Clearly, the spectrum of the former (impulse at £2f)) is an expanded version of the spectrum
of the latter (impulse at /). The effect of this scaling is demonstrated in Fig. 3.16.
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Figure 3.16 &
Scaling property 1
of the Fourier
transform.
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Reciprocity of Signal Duration and Its Bandwidth
The time-scaling property implies that if g(z) is wider, its spectrum is narrower, and vice
versa. Doubling the signal duration halves its bandwidth, and vice versa. This suggests that the
bandwidth of a signal is inversely proportional to the signal duration or width (in seconds). We
have already verified this fact for the rectangular pulse, where we found that the bandwidth
of a gate pulse of width 7 seconds is 1/t Hz. More discussion of this interesting topic can be
found in the literature.?
Example 3.9  Show that

g(—1) <= G(—f) (3.30)

Use this result and the fact that e~ #u(t) <= 1/(a + j2nf), to find the Fourier transforms of
e®u(—t) and e,

Equation (3.30) follows from Eq. (3.29) by letting a = —1. Application of Eq. (3.30) to
pair 1 of Table 3.1 yields

e*u(—1) = a—_;T]Uc
Also
e = ¢=%y (1) + M u(—1)
Therefore,

1 1 2a

e—altl + —
a+j2nf  a—j2nf  a®+ 2nf)?

(3.31)




Figure 3.17
e~ and its
Fourier spectrum.
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The signal e~%"! and its spectrum are shown in Fig. 3.17.

3.3.4 Time-Shifting Property
If
g(1) <= G(f)

then )
g(t — tg) & G(f)e /¥ fo (3.32a)

Proof: By definition,

[ee]

Flg - )] = / g(t — t0)e 7 di

Letting t — 1o = x, we have

Flgt —t)] = /oo g(x)g_jzﬂf(x+t0) dx

—0oQ

o0
= / g@)e 7 dx = G(f)e > (3.32b)

—00

This result shows that delaying a signal by ty seconds does not change its amplitude spectrum.
The phase spectrum, however, is changed by —2nfig.

Physical Explanation of the Linear Phase

Time delay in a signal causes a linear phase shift in its spectrum. This result can also be derived
by heuristic reasoning. Imagine g(¢) being synthesized by its Fourier components, which are
sinusoids of certain amplitudes and phases. The delayed signal g (f — to) can be synthesized by
the same sinusoidal components, each delayed by ¢y seconds. The amplitudes of the components
remain unchanged. Therefore, the amplitude spectrum of g (¢ — fo) is identical to that of g(z).
The time delay of #o in each sinusoid, however, does change the phase of each component.
Now, a sinusoid cos 27jt delayed by 1o is given by

cos 2rf (t — to) = cos 2uft — 2mfty)

Therefore, a time delay £ in a sinusoid of frequency f manifests as aphase delay of 27 ffo. This is
alinear function of f, meaning that higher frequency components must undergo proportionately
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Figure 3.18
Physical
explanation of
the time-shifting

property.

AWAWiWE
VARVARY

higher phase shifts to achieve the same time delay. This effect is shown in Fig. 3.18 with two
sinusoids, the frequency of the lower sinusoid being twice that of the upper. The same time
delay #o amounts to a phase shift of 7r/2 in the upper sinusoid and a phase shift of 7 in the
lower sinusoid. This verifies that to achieve the same time delay, higher frequency sinusoids
must undergo proportionately higher phase shifts.

Example 3.10 Find the Fourier transform of e—al=rl,

Figure 3.19
Effect of time
shifting on the
Fourier spectrum
of a signal.

This function, shown in Fig. 3.19a, is a time-shifted version of e~ (shown in Fig. 3.172).
From Egs. (3.31) and (3.32) we have

e /27 fo (3.33)

The spectrum of e—alt—nl (Fig, 3.19b) is the same as that of e~ (Fig. 3.17b), except for
an added phase shift of —2mffp.

D\ (GN= 72— ?;‘n ~

6e(N = —'ZT‘ﬂu/
(a) )

Observe that the time delay 1o causes a linear phase spectrum —2nft. This example
clearly demonstrates the effect of time shift.
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3.3.5 Frequency-Shifting Property
I
g(1) <= G()

then .
g = G(f —fo) (3.34)

This property is also called the modulation property.

. Proof: By definition,

o0 [o.0]
Flg(B)e?H] = / g (et~ gy = / 2 (H)e TR~ gy — G(f — fy)

—o0 —00

|
This property states that multiplication of a signal by a factor /27t ghifts the spectrum
of that signal by f = fp. Note the duality between the time-shifting and the frequency-shifting

properties.
Changing f to —fp in Eq. (3.34) yields

g(He TN — G(f + fo) (3.35)

Because /270! ig not a real function that can be generated, frequency shifting in practice
is achieved by multiplying g (¢) by a sinusoid. This can be seen from

(1) cos 2nfot = 5 [8DPH + g(0)e 7]

From Egs. (3.34) and (3.35), it follows that

1
g(t) cos 2nfot S [GU —fo) + G(f + /o)l (3.36)

This shows that the multiplication of a signal g(¢) by a sinusoid of frequency fp shifts the
spectrum G(f) by %fy. Multiplication of a sinusoid cos 27fyt by g(f) amounts to modulating
the sinusoid amplitude. This type of modulation is known as amplitude modulation. The
sinusoid cos 27 fyt is called the carrier, the signal g (¢) is the modulating signal, and the signal
g(2) cos 2mfyt is the modulated signal. Modulation and demodulation will be discussed in
detail in Chapters 4 and 5.

To sketch a signal g (¢) cos 2mfot, we observe that

g when cos 2rfor =1
g(t) cos 2nfot = { —g(t) when cos 2rfyt = —1
Therefore, g () cos 2mfyt touches g(¢) when the sinusoid cos 27 fyt is at its positive peaks and
touches —g(¢) when cos 27fyt is at its negative peaks. This means that g(z) and —g(¥) act as
envelopes for the signal g(¢) cos 2rfot (see Fig. 3.20c). The signal —g(¢) is a mirror image
of g(¢) about the horizontal axis. Figure 3.20 shows the signals g(¢), g(#) cos 2xfyt, and their
respective spectra.
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Figure 3.20
Amplitude
modulation of a
signal causes

speciral shifting.
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Shifting the Phase Spectrum of a Modulated Signal

We can shift the phase of each spectral component of a modulated signal by a constant amount
6o merely by using a carrier cos (2mfot + 6p) instead of cos 2nfpt. If a signal g(¢) is multiplied
by cos (27 fpt + 6p), then we can use an argument similar to that used to derive Eq. (3.36), to
show that

£ cos @nfor +00) = 7 [6¢ ) + GG +feT®]  @3D)

For a special case when 8y = —n/2, Eq. (3.37) becomes

() sin 2fot < % [G(f —fo) e 4 G(f + o) e"”/2] (3.38)

Observe that sin 2mfpt is cos 2xfpt with a phase delay of & /2. Thus, shifting the carrier phase
by /2 shifts the phase of every spectral component by /2. Figures 3.20e and f show the
signal g(¢) sin 2xfpt and its spectrum.

Modulation is a common application that shifts signal spectra. In particular, If several
message signals, each occupying the same frequency band, are transmitted simultaneously
over a common transmission medium, they will all interfere; it will be impossible to separate
or retrieve them at a receiver. For example, if all radio stations decide to broadcast audio signals
simultaneously, receivers will not be able to separate them. This problem is solved by using
modulation, whereby each radio station is assigned a distinct carrier frequency. Each station
transmits a modulated signal, thus shifting the signal spectrum to its allocated band, which is
not occupied by any other station. A radio receiver can pick up any station by tuning to the




Figure 3.21
Bandpass signal

and its spectrum.
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I Gbp(f) I

(b)

band of the desired station. The receiver must now demodulate the received signal (undo the
effect of modulation). Demodulation therefore consists of another spectral shift required to
restore the signal to its original band.

Bandpass Signals

Figure 3.20(d)(f) shows that if g.(r) and g,(f) are low-pass signals, each with a bandwidth B
Hz or 27 B rad/s, then the signals g.() cos 2nfyt and g,(t) sin 27 fyt are both bandpass signals
occupying the same band, and each having a bandwidth of 2B Hz. Hence, a linear combination
of both these signals will also be a bandpass signal occupying the same band as that of the
either signal, and with the same bandwidth (2B Hz). Hence, a general bandpdss signal gbp )
can be expressed as™

8op(t) = gc(t) cos 2mfot + g4(¢) sin 2wyt (3.39)
The spectrum of g, () is centered at +fy and has a bandwidth 2B, as shown in Fig. 3.21.
Although the magnitude spectra of both g.(¢) cos 2rfpt and gy (¢) sin 2rfpt are symmetrical
about Xfj, the magnitude spectrum of their sum, ghp(?), is not necessarily symmetrical about

+fp. This is because the different phases of the two signals do not allow their amplitudes to
add directly for the reason that

alei‘pl + azeifpz # (a1 + az)ei((/7l+(m)

Atypical bandpass signal g, (f) and its spectra are shown in Fig. 3.21. We can use a well-known
trigonometric identity to express Eq. (3.39) as

8op(t) = E(t) cos [2rfot + ¢ (2)] (3.40)

where

E(t) = +,/82() + g2(t) (3.41a)

¥ () = —tan”! [gx(”] (3.41b)

ge(1)

* See Sec. 9.9 for a rigorous proof of this statement.
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Because g¢(t) and g;(t) are low-pass signals, E(¢) and v (¢) are also low-pass signals. Because
E(r) is nonnegative [Eq. (3.41a)], it follows from Eq. (3.40) that E(z) is a slowly varying
envelope and y(¢) is a slowly varying phase of the bandpass signal gy, (¢), as shown in Fig. 3.21.
Thus, the bandpass signal gp, (t) will appear as a sinusoid of slowly varying amplitude. Because
of the time-varying phase ¥ (¢), the frequency of the sinusoid also varies slowly* with time
about the center frequency fo.

Examp|e 3.11 Find the Fourier transform of a general periodic signal g (¢) of period Tg, and hence, determine
the Fourier transform of the periodic impulse train 87, (¢) shown in Fig. 3.22a.

Figure 3.22 1
Impulse frain and Ig(t) l G(f) = =—06()
its spectrum. To

3T, -To 0 2T, 4T, 2fo —-fo 0 fo  2fo

(— f—

(a) (b)

A periodic signal g(¢) can be expressed as an exponential Fourier series as

oo
. 1
1) = D e]nZJTf()f I
gt)y= Y Da fo= 1
n=—0c0
Therefore, ‘
o0
gt) &= Y FID, "™
n=—00
Now from Eq. (3.22a), it follows that
x>
gty &= Y Dy8(f —nfo) (3.42)
n=—00

Equation (2.67) shows that the impulse train 87, () can be expressed as an exponential
Fourier series as

1 w—
O = ), I =g
n=—0o

* It is necessary that B <« fy for a well-defined envelope. Otherwise the variations of E(¢) are of the same order as
the carrier, and it will be difficult to separate the envelope from the carrier.
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Here Dy, = 1/Tp. Therefore, from Eq. (3.42),
1 o0
oy (0) = = n;,ow - nfo)

1 1
=% o= (3.43)

Thus, the spectrum of the impulse train also happens to be an impulse train (in the frequency
domain), as shown in Fig. 3.23b.

3.3.6 Convolution Theorem

The convolution of two functions g(¢) and w(r), denoted by g(¢) * w(t), is defined by the
integral
[e0)
8t ¥ w(t) = f g (DW(t ~ ) dr

—00

The time convolution property and its dual, the frequency convolution property, state
that if .

g1(t) <= Gi(f) and  g2(f) &= G2(f)

then (time convolution) -
g1(t) * g2(t) <= G1()G2(f) (3.44)
and (frequency convolution)

g1()g2(t) = Gi(f) * Ga(f) (3.45)

These two relationships of the convolution theorem state that convolution of two signals in
the time domain becomes multiplication in the frequency domain, while multiplication of two
signals in the time domain becomes convolution in the frequency domain.

Proof: By definition,

Fla1(t) * g2 = / e [ f g1<r>g2(s—r)dr]dz

= /00 g1(7) [/-oo e_ﬂ"ﬂgz(t—r)dt] dt

The inner integral is the Fourier transform of g»(# — 7), given by [time-shifting property in
Eq. (3.32a)] G2(f)e 727, Hence,

Flgi(t) * g2()] = f g1(e TGy (f) dr

=G2(f)/ g1(D)e 7T dr = G{(HGa () Iid
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The frequency convolution property (3.45) can be proved in exactly the same way by reversing
the roles of g(¢) and G(f).

Bandwidth of the Product of Two Signals

If g1(r) and g2(r) have bandwidths B| and B, Hz, respectively, the bandwidth of g1 (£)g2(t) is
B1 + By Hz. This result follows from the application of the width property of convolution®
to Eq. (3.45). This property states that the width of x * y is the sum of the widths of x and y.
Consequently, if the bandwidth of g(¢) is B Hz, then the bandwidth of gz(t) is 2B Hz, and the
bandwidth of g"(¢) is nB Hz.*

Example 3.12 Using the time convolution property, show that if

g(t) < G(f)
then ]
/ g()dr Z—(f% + G(O)8(f) (3.46)
Because
TN

it follows that

[e0] t
g(t)*u(t):/ g(r)u(t—r)dt:/ g(r)ydr

-0 —00

Now from the time convolution property [Eq. (3.44)], it follows that

g xu(t) <= GU()

=G(f) [_f + = (f):l
_GH
anf + G(O)S(f)

In deriving the last result we used pair 11 of Table 3.1 and Eq. (2.10a).

3.3.7 Time Differentiation and Time Integration
If

g(t) <= G(),

* The width property of convolution does not hold in some pathological cases. It fails when the convolution of two
functions is zero over a range even when both functions are nonzero [e.g., sin 27 fy¢ u(¢) * u(t)]. Technically the
property holds even in this case if in calculating the width of the convolved function, we take into account the range
in which the convolution is zero.
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then (time differentiation)*

df‘:;” — j2nfG(f) CY)
and (time integration)
{
f g(t)ydr G—(f) + lG(O)(S(f) (3.48)
s 2rnf 2

Proof: Differentiation of both sides of Eq. (3.9b) yields

BO [ jongore o

This shows that

™
% e 27fG(f)

Repeated application of this property yields

d"g(1)
tﬂ

< (2nf)"G(f) (3.49)

The time integration property [Eq. (3.48)] already has been proved in Example 3.12. |

Example 3.13

Figure 3.23
Using the fime
differentiation
roperty lo
Enjngrf{he
Fourier transform
ofa
piecewise-linear
signal.

Use the time differentiation property to find the Fourier transform of the triangular pulse A(¢/7)
shown in Fig. 3.23a.

= 5 S~ (a)
2 2
d
2
T e
= 0 | = ®
5 T
=3 2 @ fmn
T
2 d% 12
A
- 0 T > ©
2 =Y
Ay
T

* Valid only if the transform of dg(f)/dt exists.

e e
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To find the Fourier transform of this pulse, we differentiate it successively, as shown in
Fig. 3.23b and c. The second derivative consists of a sequence of impulses (Fig. 3.23c).
Recall that the derivative of a signal at a jump discontinuity is an impulse of strength equal
to the amount of jump. The function dg(z)/dt has a positive jump of 2/t at r = +1/2,
and a negative jump of 4/t at t = Q. Therefore,

d’g) _2 [a (t+ g) —25(1) +5(,_ %)] (3.50)

dr? T

From the time differentiation property [Eq. (3.49)],

L = 216 = NG (3.512)

Also, from the time-shifting property [Eqgs. (3.32)],
8(t — 1) == e 20 (3.51b)
Taking the Fourier transform of Eq. (3.50) and using the results in Eq. (3.51), we obtain

G2 26() = 2 (97— 24 e77) = L cos mpe — 1) = =S sin? <m>
T T T 2

and

. 8 o (mft\ T [sin(rft/2) 2_1’ . o fmfT
0=y () =3 S| 30 (F) 0

The spectrum G(f) is shown in Fig. 3.23d. This procedure of finding the Fourier transform
can be applied to any function g(#) made up of straight-line segments with g(f) — 0 as
[t| = oo. The second derivative of such a signal yields a sequence of impulses whose
Fourier transform can be found by inspection. This example suggests a numerical method
of finding the Fourier transform of an arbitrary signal g (¢) by approximating the signal by
straight-line segments.

To provide easy reference, several important properties of Fourier transform are summa-
rized in Table 3.2.

3.4 SIGNAL TRANSMISSION THROUGH
A LINEAR SYSTEM

Alinear time-invariant (LTI) continuous time system can be characterized equally well in either
the time domain or the frequency domain. The LTI system model, illustrated in Fig. 3.24,
can often be used to characterize communication channels. In communication systems and
in signal processing, we are interested only in bounded-input-bounded-output (BIBO) stable
linear systems. Detailed discussions on system stability can be found in the textbook by Lathi.?




Figure 3.24
Signal
transmission
through a linear
time-invariant
system.
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TABLE 3.2
Properties of Fourier Transform Operations
Operation g() G()
Superposition g1+ 820  Gi(f) + G2(f)
Scalar multiplication kg(t) kG(f)
Duality G(t) g(—f)
Time scaling g(ar) e (Jg)
Time shifting gt — to) G(f)eJ2nfo
Frequency shifting ge2mht G — f)
Time convolution g1 xg2(t) GL{(NG()
Frequency convolution g (£)ga(¢) G1(f) * Ga ()
n
Time differentiation dLn(‘) G2F)Y"G(F)
at
. ) G

Time integration fi 0o 8() dx ]2—]({} + %G(O)a )

Input signal Output signal
Time-domain x(®) LTT system y(t) = h(t) * x(1)

SE—— h(¢) 3

Frequency-domain  X(f) H(f) Y= HE) - XU)

Asstable LTI system can be characterized in the time domain by its impulse response A(¢), which
is the system response to a unit impulse input, that is,

x() =8(1)

y(t) = h(t) when

The system response to a bounded input signal x(¢) follows the convolutional relationship

y(©) = h(t) * x(t) (3.53)

The frequency domain relationship between the input and the output is obtained by taking
Fourier transform of both sides of Eq. (3.53). We let

x(t) <= X(f)
Y@ &= Y ()
h(t) <= H(f)

Then according to the convolution theorem, Eq. (3.53) becomes

Y(fy=H({) -X(f) (3.54)

Generally H (f), the Fourier transform of the impulse response k(t), is referred to as the
transfer function or the frequency response of the LTI system. Again, in general, H(f) is
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complex and can be written as
H(f) = [H ()™

where |H ()| is the amplitude response and 0, (f) is the phase response of the LTI system.

3.4.1 Signal Distortion during Transmission

The transmission of an input signal x() through a system changes it into the output signal y(1).
Equation (3.54) shows the nature of this change or modification. Here X (f) and Y(f) are the
spectra of the input and the output, respectively. Therefore, H (f) is the spectral response of the
system. The output spectrum is given by the input spectrum multiplied by the spectral response
of the system. Equation (3.54) clearly brings out the spectral shaping (or modification) of the
signal by the system. Equation (3.54) can be expressed in polar form as

Y ()1 = 1X (F)IH ()OO F]
Therefore, we have the amplitude and phase relationships

Y (O = 1XENHE)I (3.55a)
6y (f) = 0x(f) + On(f) (3.55b)

During the transmission, the input signal amplitude spectrum |X (f)| is changed to |X ()] -
|H (f)|. Similarly, the input signal phase spectrum 6,(f) is changed to Ou(f) + Bu(f).

An input signal spectral component of frequency f is modified in amplitude by a factor
|H (f)| and is shifted in phase by an angle 6,(f). Clearly, |[H(f)] is the amplitude response,
and 6, (f) is the phase response of the system. The plots of |H(f)| and 8;(f) as functions of
f show at a glance how the system modifies the amplitudes and phases of various sinusoidal
inputs. This is why H (f) is called the frequency response of the system. During transmission
through the system, some frequency components may be boosted in amplitude, while others
may be attenuated. The relative phases of the various components also change. In general, the
output waveform will be different from the input waveform.

3.4.2 Distortionless Transmission

In several applications, such as signal amplification or message signal transmission over a
communication channel, we require the output waveform to be a replica of the input waveform.
In such cases, we need to minimize the distortion caused by the amplifier or the communication
channel. It is therefore of practical interest to determine the characteristics of a system that
allows a signal to pass without distortion (distortionless transmission).

Transmission is said to be distortionless if the input and the output have identical wave
shapes within a multiplicative constant. A delayed output that retains the input waveform s also
considered distortionless. Thus, in distortionless transmission, the input x(#) and the output
y(t) satisfy the condition

y(t) =k - x(t — tq4) (3.56)

The Fourier transform of this equation yiclds

Y(f) = kX (f ) /24




