Conclusions and discussions Comparisons

Performance of Digital Modulation

- Let us first consider the case of binary signaling with coherent detection in an AWGN channel
- For equally likely symbols the minimum probability of error is obtained using a maximum liklihood receiver
- The probability of symbol (and equivalently bit) error is

$$P_b = Q\left(\sqrt{\frac{E_b}{N_o}}(1-\rho)\right)$$

 P_b = bit err. prob. P_s = sym. err. prob.

- Where $Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du$ is the standard Q-function
- E_b/N_o is the average energy per bit divided by the one sided power spectral density N_o
- and ρ is correlation coefficient between symbols:

$$\rho = \frac{1}{\sqrt{E_1 E_2}} \int_{0}^{T} s_1(t) s_2(t) dt$$

 E_1 = energy in symbol 1 E_2 = energy in symbol 2 T = symbol duration

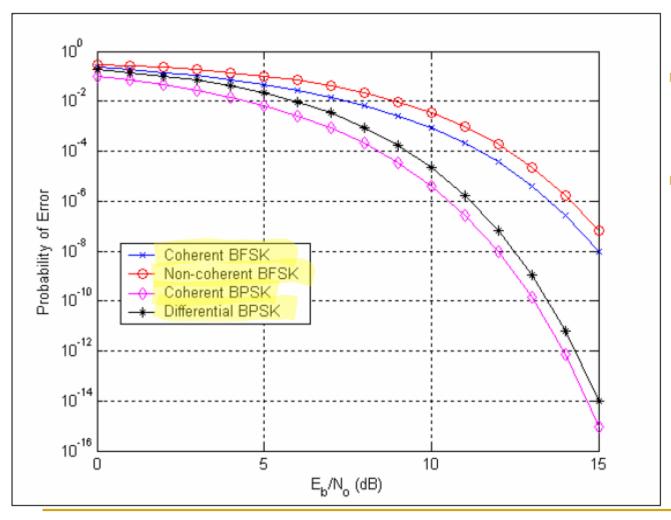
Performance of Binary Digital Modulation

$$P_b = Q\left(\sqrt{\frac{E_b}{N_o}(1-\rho)}\right)$$

Specific cases:

- $\rho = 0$
 - orthogonal modulation (e.g., BFSK, BASK)
- $\rho = -1$
 - Antipodal signaling (e.g., BPSK)
 - Best performance for binary modulation
- ρ > 0 results in worse performance than either case

Non-coherent modulation


- FSK and ASK do not encode information in the phase of the carrier, thus we do not need to demodulate coherently.
- Most simply, we use an envelope detector
- However, there is a performance penalty
- The bit error rate for non-coherent BASK and BFSK is

$$P_b \approx \frac{1}{2} e^{-\frac{1}{2} \frac{E_b}{N_o}}$$

Compare this to coherent BASK/BFSK which has a performance of

$$P_b = Q\left(\sqrt{\frac{E_b}{N_o}}\right) \approx \frac{1}{\sqrt{2\pi E_b/N_o}} e^{-\frac{1 E_b}{2 N_o}}$$

Coherent vs. Non-coherent Demodulation

- Approximately 1dB loss for non-coherent demodulation
- Approximately 3dB loss going from PSK to FSK/ASK

HW₁

Bandwidth Efficiency

 For rectangular pulses, the spectrum of PSK and ASK is a sinc function. The bandwidth of this signal is usually specified as null-to-null bandwidth

$$W = 2R_s$$

 For FSK, the minimum spacing between phase synchronous carriers for coherent demodulation is

$$\Delta f_{\min} = \frac{1}{2T_s} = \frac{R_s}{2}$$

 Since the individual carriers are modulation by square pulses, the null-to-null bandwidth is R_s + R_s/2 + R_s or

$$W = 2.5R_s$$

Note: For non-phase synchronous carriers $W=3R_s$

Bandwidth Efficiency

Modulation Type	Bandwidth Efficiency (b/s/Hz)
BPSK	0.5
BASK	0.5
BFSK	0.4

- The bandwidth efficiency of binary modulation is not very good. Thus, we typically use M-ary modulation schemes to improve spectral efficiency
- Pulse shaping is also used to control bandwidth

M-ary Modulation

- M-PSK → log₂(M) bits are transmitted per symbol by sending one of M carrier phases
- M-FSK → log₂(M) bits are transmitted per symbol by sending one of M carrier frequencies
- QAM → log₂(M) bits are transmitted per symbol by sending one of M combinations of amplitudes and phases

Performance of M-ary Modulation

■ M-PSK
$$P_s \le 2Q \left(\sqrt{\frac{2E_b}{N_o} \log_2(M)} \sin\left(\frac{\pi}{M}\right) \right)$$

Performance degrades with increasing M

■ M-FSK
$$P_s \leq (M-1)Q\left(\sqrt{\frac{E_b}{N_o}\log_2(M)}\right)$$

Performance improves with increasing M

QAM (assuming M is power of 4)

$$P_{s} = 1 - \frac{1}{M} \left[\left(\sqrt{M} - 2 \right)^{2} \left(1 - 2Q \left(\sqrt{\frac{6 \log_{2}(M)}{2(M-1)}} \frac{E_{b}}{N_{o}} \right) \right)^{2} \right]$$

Performance degrades with increasing M

$$+4\left(\sqrt{M}-2\right)\left(1-2Q\left(\sqrt{\frac{6\log_{2}(M)}{2(M-1)}}\frac{E_{b}}{N_{o}}\right)\right)\left(1-Q\left(\sqrt{\frac{6\log_{2}(M)}{2(M-1)}}\frac{E_{b}}{N_{o}}\right)\right)+4\left(1-Q\left(\sqrt{\frac{6\log_{2}(M)}{2(M-1)}}\frac{E_{b}}{N_{o}}\right)\right)^{2}\right)$$

Non-coherent *M*-ary Modulation Performance

DPSK

$$P_{s} \leq \pi \frac{\cos(\pi/2M)}{\sqrt{\cos(\pi/M)}} Q \left(2\sqrt{\frac{E_{b}}{N_{o}}} \log_{2}(M) \sin\left(\frac{\pi}{M}\right) \right)$$

Performance degrades with increasing *M*

Non-coherent M-FSK

$$P_{s} = \sum_{k=1}^{M-1} {M-1 \choose k} \frac{(-1)^{k+1}}{k+1} \exp\left(-\frac{k}{k+1} \frac{E_{b}}{N_{o}} \log_{2}(M)\right)$$

Performance improves with increasing *M*

Bandwidth Efficiency

Modulation Type	Bandwidth Efficiency (b/s/Hz)
MPSK/MDPSK/MQAM	$\frac{\log_2(M)}{2}$
BASK	0.5
Coherent MFSK	$\frac{2\log_2(M)}{M+3}$
Non-coherent MFSK	$\frac{\log_2(M)}{M+1}$

- Bandwidth efficiency increases with M for PSK and QAM. It decreases with M for FSK.
- Pulse shape also heavily influences bandwidth

Power Efficiency

We desire small η_E

Modulation Type	Power Efficiency (E _b /N _o for P _e = 10 ⁻⁵)			
BPSK/QPSK (DBPSK)	9.5dB (10.5dB)			
8-PSK (8-DPSK)	13.5dB (16.5dB)			
16-PSK (16-DPSK)	18dB (21dB)			
32-PSK (32-DPSK)	23dB (26dB)			
Coherent BFSK (Non-coherent)	12.5dB (13.5dB)			
Coherent 4-FSK (Non-coherent)	10dB (11dB)			
Coherent 8-FSK (Non-coherent)	8dB (9dB)			
Coherent 16-FSK (Non-coherent)	7dB (8dB)			
4-QAM	9.5dB			
16-QAM	13dB			
64-QAM	17.5 dB			

- Note: For PSK/QAM we can use Gray coding and thus $P_b = \frac{P_s}{\log_2 M}$ For FSK $P_b = \frac{MP_s}{2(M-1)}$
- For PSK/QAM BER increases with M
- For FSK BER decreases with M
- Non-coherent demodulation suffers 1-3dB penalty for PSK but little penalty for FSK (at low error rates)

Conclusions

- Today we briefly reviewed digital communication systems with an emphasis on modulation schemes
- In general we can increase bandwidth (spectral) efficiency by increasing the order of the modulation scheme (opposite is true for FSK)
- In general the power efficiency is degraded by increasing modulation order (opposite is true for FSK)
- Thus, we have a classic trade-off in communication systems between bandwidth and energy efficiency
 - Note that bandwidth efficiency is not the primary concern for spread spectrum as we will see
- Non-coherent demodulation allows us to trade off complexity for energy efficiency

	cdmaOne, IS95, ANSI J-STD- 008	GSM, DCS-1900, ANSI J-STD- 007	NADC, IS-54/IS-136, ANSI J-STD- 011	PACS, ANSI J-STD- 014
Uplink Frequencies	824-849 MHz (US Cellular) 1850-1910 MHz (US PCS)	890-915 MHz (Europe) 1850-1910 MHz (US PCS)	824-849 MHz (US Cellular) 1850-1910 MHz (US PCS)	1850-1910 MHz (US PCS)
Downlink Frequencies	869-894 MHz (US Cellular) 1930-1990 MHz (US PCS)	935-960 MHz (Europe) 1930-1990 MHz (US PCS)	869-894 MHz (US Cellular) 1930-1990 MHz (US PCS)	1930-1990 MHz (US PCS)
Duplexing	FDD	FDD	FDD	FDD
Multiple Access Technology	CDMA	TDMA	TDMA	TDMA
Modulation	BPSK with Quadrature Spreading	GMSK with BT=0.3	π/4 DQPSK	π/4 DQPSK
Carrier Separation	1.25 MHz	200 kHz	30 kHz	300 kHz
Channel Data Rate	1.2288 Mchips/ sec	270.833 kbps	48.6 kbps	384 kbps
Voice and Control Channels per Carrier	64	8	3	8 (16 with 16 kbps vocoder)
Speech Coding	Code Excited Linear Prediction (CELP) @ 13 kbps, Enhanced Variable Rate Codec (EVRC) @ 8 kbps	Residual Pulse Excited-Long Term Prediction (RPE-LTP) @ 13 kbps	Vector Sum Excited Linear Predictive Coder (VSELP) @ 7.95 kbps	Adaptive Differential Pulse Code Modulation (ADPCM) @ 32 kbps
	By: D	r.Mohab Mangoud		