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1.2 CLASSIFICATION OF SIGNALS

1.2.1 Deterministic and Random Signals

A signal can be classified as [deterministic/meaning that there is no uncertainty with
respect to its value at any time, or as fandom] meaning that there is some degree of
uncertainty before the signal actually occurs.(Deterministic signalsjor waveforms
are modeled by explicit mathematical expressions, such as x(t) = 5 cos 10t For a
random waveform it is not possible to write such an explicit expression. However,
when examined over a long period, a random waveform, also referred to as a ran-

dom process,| may exhibit certain regularities that can be described in terms of

probabilities and statistical averages. Such a model, in the form of a probabilistic
description of the random process, is particularly useful for characterizing signals
and noise in communication systems.



Classification of signals (1)

* (1) Deterministic and random signals

— Deterministic signal: No uncertainty with
respect to the signal value at any time.

— Random signal: Some degree of uncertainty In
signal values before it actually occurs.

 Thermal noise In electronic circuits due to the random
movement of electrons

 Reflection of radio waves from different layers of
lonosphere




1.2.3| Analog and Discrete Signals

An analog signal x(t) is a continuous function of time; that is, x(f) is uniquely de-
fined for all ©. An electrical analog signal arises when a physical waveform (e.g.,
speech) is converted into an electrical signal by means of a transducer. By compari-
son, a discrete signal x(kT') is one that exists only at discrete times; it is character-
ized by a sequence of numbers defined for each time, k7, where k is an integer and
T is a fixed time interval.



1.2.2| Periodic and Nonperiodic Signals

A signal x(1) 1s called periodic in time if there exists a constant 7}, > 0 such that

[ x()=x(t +Ty) for—-° <t < m} (1.2)

where t denotes time. The smallest value of T, that satisfies this condition 1s called
the period of x(1). The period T, defines the duration of one complete cycle of x(¢).
A signal for which there is no value of 7| that satisfies Equation (1.2) is called a
nonperiodic signal.



Classification of signals (2,3)...
 (2) Periodic and non-periodic signals
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1.2.4] Energy and Power Signals

An electrical signal can be represented as a voltage v(¢) or a current i(r) with in-
stantaneous power p(t) across a resistor 9t defined by

2
p(r) = 222 (1.3a)
or
p(t) = (R (1.3b)

In communication systems, power is often normalized by assuming 9 to be 1 (),
although & may be another value in the actual circuit. If the actual value of the
power is needed, it 1s obtained by “denormalization™ of the normalized value. For
the normalized case, Equations 1.3a and 1.3b have the same form. Therefore, re-
gardless of whether the signal is a voltage or current waveform, the normalization
convention allows us to express the instantaneous power as

p(t) = x*(1) (1.4)

where x(r) is either a voltage or a current signal. The energy dissipated during the
time interval (=772, 7/2) by a real signal with instantaneous power expressed by
Equation (1.4) can then be written as

T2
E_';"=f x’(t) dt (1.5)
-T2

and th‘i: average l:vuwer dissipated by the signal during the interval is

1 1
T o it S ”-.
P T E; T .[,.,.-3 x*(r) dr (1.6)




In analyzing communication signals, it | desirable to deal with the
waveform energy. We classify x(r) as an pnergy signal |f, and only if, it has nonzero

but finite energy (0 < E, < @) for all time, where

E,
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7 (1.7)

= f x2(t) dt

In the real world, we always transmit signals having finite energy (0 < E, < =),
However, in order to describe periodic signals, which by definition [Equation (1.2)]
exist for all time and thus have infinite energy, and in order to deal with random
signals that have infinite energy, it is convenient to define a class of signals called
power signals. |A signal is defined as a power signal if, and only if, it has finite but
nonzero power () < P, < =) for all time, where

1 T/2
P, = lim — f x*(1) di (1.8)

"—
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The energy and power classifications are mutually exclusive] An energy signal|has
finite energy but zero average power, whereag a power signal has finite average

power but infinite energy. A waveform in a system may be constramned in either ifs

DOWer O energy values] As a general rule, periodic signals and random signals are

classified as power signals, while signals that are both deterministic and nonperi-
odic are classified as energy signals [1, 2],

, i N
= 3 .a._-.ﬂﬂlil-ri“.i'l i



Classification of signals (4)..
(4) Energy and power signals

— Asignal is an energy signal if, and only if, it has nonzero but finite
energy for all time:

E i 2 PR = [ o2t
== Im =
o= Jim [ le@Pdi= [ 2]
(0 < bz < OO)
— Asignal is a power signal if, and only if, it has finite but nonzero power
for all time:
1 T
Pr= lim - f < (t)[2dt
T T JT/2
(0 < Py < o0)
General rule:

— Periodic and random signals = power signals.
— deterministic qcnd non-periodic = enerqy signals.




1.2.5 The Unit Impulse Function
A useful function in communication theory is the unit impulse or Dirac delta func-
tion 8(r). The impulse function is an abstraction—an infinitely large amplitude
pulse, with zero pulse width, and unity weight (area under the pulse), concentrated
at the point where its argument is zero. The unit impulse is characterized by the
following relationships:

[ 5(t)dt =1 (1.9)

3(t) =0  fort #0 (1.10)
d(1) is unbounded at ¢ = 0 (1.11)
f x(0)d(t — ty) dt = x(ty) (1.12)

E-quafion (l.'li) is known as the sifting or sampling property of the unit
impulse function; the unit impulse multiplier selects a sample of the function x(1)
evaluated at t =1y,



1.3 SPECTRAL DENSITY

The spectral densiy of a sgnal characterizes the distribution of the signal's energy

ot power in the frequency domain] This concept 1 particularly important When
considering filtering in communication systems. We nced {0 be able to evaluate the

signal and noise at'lhc hlter output. The energy spectral density (ESD) or the
power spectral density (PSD) is used in the evaluation. |



1.3.1 Energy Spectral Density

The total energy of a real-valued energy signal x(r), defined over the interval,
(= %, =), is described by Equation (1.7). Using Parseval’s theorem [1], we can relate
the energy of such a signal expressed in the time domain to the energy expressed in

the frequency domain, as

£

X

f X(t) dt = f_:u’(f)lw

(1.13)

where X(f) is the Fourier transform of the nonperiodic signal x(¢). (For a review of
Fourier techniques, see Appendix A.) Let |, (f) denote the squared magnitude

spectrum, defined as

n(f) = 1X()I?

(1.14)

The quantify s, (f) is the waveform energy spectral density (ESD) of the signal x(¢).
Therefore, from Equation (1.13), we can express the total energy of x(1) by inte-
grating the spectral density with respect to frequency:

E, = f W (f ) df

(1.15)



1.3.2[ Power Spectral Density ]

The average power P, of a real-valued power signal x(¢) is defined in Equation
(1.8). If x(r) is a periodic signal with period Ty, it is classified as a power signal. The
expression for|the average power of a periodic signal|takes the form of Equation
(1.6), where the time average is taken over the signal period 7, as follows:

ol

I Ty

I
' T

x*(t) dr (1.17a)
7.2

Parseval’s theorem for a real-valued periodic signal [1] takes the form

1 T{ i I.'I 2 =

= — ) dt = Y, eyl (1.17b)
T{] -To/2

where the |c,| terms are the complex Fourier series coefficients of the periodic
signal. (See Appendix A.) | TRy

P,
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To apply Equation (1.17b), we need only know the magnitude of the coeffi-
cients, |¢,l. The power spectral density (PSD) function G, (f) of the periodic signal
x(t) is a real, even, and nonnegative function of frequency that gives the distribu-
tion of the power of x(t) in the frequency domain, defined as

*=

G(f) = 2 leal*d(f = nfy) (1.18)

y1=— 0

Equation (1.18) defines the power spectral density of a periodic signal x(7) as a
succession of the weighted delta functions. Therefore, the PSD of a periodic signal
is a discrete function of frequency. Using the PSD defined in Equation (1.18), we
can now write the average normalized power of a real-valued signal as

P, = f G(f)df =2 f G(f) df (1.19)

- 0




Equation (1.18) describes the PSD of periodic (power) signals only. If x(r)is a
nonperiodic signal it cannot be expressed by a Fourier series, and if it is a nonperi-
odic power signal (having infinite energy) it may not have a Fourier transform.
However, we may still express the power spectral density of such signals in the
limiting sense. If we form a truncated version x;{(t) of the nonperiodic power signal

x(f) by observing it only in the interval (- 7/2, 7/2), then x7(1) has finite energy and
has a proper Fourier transform X7(f). It can be shown [2] thatithe power spectral

density of the nonperiodic x(¢)[can then be defined in the limit as

o ; _
G{f) = Jim — X (/)] (1.20)




Example 1.1 Average Normalized Power

(a) Find the average normalized power in the waveform, x(1) = A cos 2mfyf, using time
averaging.
(b) Repeat part (a) using the summation of spectral coefficients.

Solution —
Twi2

a) Using Equation @we have - 1 ' 5
(a) g Eq AN = x“(r) dr
1 w2 Tﬂ T
P, = — f A? cos? 2mf,r di
Ty Tof2

AZ Tol2
= -—f (1 + cos 4mf,t ) dr

o

G(f) = 2 lenl*8(f = nfo)

n=—x

P,

= f: G(f)df =2 f: G(f) df

G(f) = S le,28(f — nfy)

n=—=0c

e 0 for n = O‘ :1:2. i3, a4 (See Appﬁ‘ﬂdix A)

G =(2) -1+ (2) s+ fa
A2

> f_in(f)df=?



1.4 l&UTOCOHHELATION

1.4.1 Autocorrelation of an Energy Signal

Correlation is a matching process; autocorrelation refers to the matching of a
signal with a delayed version of itself, The autocorrelation function of a real-valued
energy signal x(r) is defined as

{ R(7) = J""”‘ x(t)x(t + 1) dt for—0 <1< Oﬂ] (1.21)

The autocorrelation function R,(7) provides a measure of how closely the signal
matches a copy of itself as the copy is shifted T units in time. The variable 7 plays
the role of a scanning or searching parameter. R,(7) is not a function of time; it is
only a function of the time difference T between the waveform and its shifted copy.



The autocorrelative function of a real-valued energy signal has the following
properties:

L R.(7)=R.(-71) symmetrical in T about zero
2. R(1)<R/0)forall 7 maximum value occurs at the origin
3. R(7) U (h) autocorrelation and ESD form a Fourier trans-
form pair, as designated by the double-headed
e arrows
4. R (0)= f x*(t) dt value at the origin is equal to the energy of the
- signal

If items 1 through 3 are satisfied, R (1) satisfies the properties of an autocorrelation
function. Property 4 can be derived from property 3 and thus need not be included
as a basic test.



1.4.2 Autocorrelation of a Periodic (Power) Signal

The autocorrelation function of a real-valued power signal x(¢) is defined as

¥
R(7) = lim L] f x(x(t +7)dr for—-® <1< ® | (1.22)

When the power signal x(7) is periodic with period 7}, the time average in Equation
(1.22) may be taken over a single period T, and the autocorrelation function can be
expressed as

1

R(7) = T

T2
f x()x(t +1)dt for—®° <7< ® (1.23)
T2

The autocorrelation function of a real-valued periodic signal has properties
similar to those of an energy signal:

L R(t)=R.(-7) symmetrical in T about zero
2. R(t)<R/(0) forall~ maximum value occurs at the origin
3. R(1) & G.(f) autocorrelation and PSD form a Fourier trans-

{ [T form pair
4. R(0) = T f x’(t) dr  value at the origin is equal to the average power
0 - -2 of the signal




Spectral density

® Energy signhals:
By = [20, |z(0)[Pdt = [, 1X(OH%df X (f) = Flz(t)]

— Energy spectral density (ESD): V. (f) = |X(f)|2

® Power signals:

Py = fT0/2 l2(@)|2dt = X5 _ oo lenl?  {en} = Flz(t)]

— Power spectral density (PSD):

Gz(f) = io: en|?8(f —nfo)  fo=1/To

n=—oc

® Random process:
— Power spectral density (PSD): Gx(f) = F[Rx(7)]




Autocorrelation

e Autocorrelation of an energy signal

Ry(7m) = z(r) *x*(—7) = [, z(t)z™(t — 7)dt

e Autocorrelation of a power signal

— 1 (7/2 .
Ry (1) = Til’loo T 72 z(t)z™(t — 7)dt

— For a periodic signal:

Ro() = IT% ?2 z()z*(t — 7)dt



1.5 RANDOM SIGNALS
1.5.1 Random Variables

Let a random variable X(A) represent the functional relationship between a ran-
dom event A and a real number. For notational convenience, we shall designate the
random variable by X, and let the functional dependence upon A be implicit. The
random variable may be discrete or continuous. The distribution function Fy(x) of
the random variable X is given by

Fy(x) = P(X < x) (1.24)

where P(X < x) is the probability that the value taken by the random variable X
is less than or equal to a real number x. The distribution function Fy(x) has the
following properties:

1. 0 Fy(x) =1
2. Fy(xy) £ Fy(x;) if x; £ x5
3. Fy(—2)=0
4. Fx(+>)=1




Another useful function relating to the random variable X is the probability
density function (pdf), denoted

dFy(x)
pxl(x) = %

(1.25a)

As in the case of the distribution function, the pdf is a function of a real number x.
The name “density function™ arises from the fact that the probability of the event

x; £ X £x, equals

Plx,=X=1x;) = P(X=x,) - P(X=x,)
“FX x’s)_FX Il) (1.25b)

g



From Equation (1.25b), the probability that a random variable X has a value in
some very narrow range between x and x + Ax can be approximated as

Plx =X=x + Ax) = py(x)Ax (1.25¢)
Thus, 1n the imit as Ax approaches zero. we can write
P(X=x) = py(x)dx (1.25d)

The probability density function has the following properties:

L. py(x)=20.

oo

2, f px(x)dx=Fxy(+ ®) - Fy(—»)=1.

Thus, a probability density function is always a nonnegative function with a total
area of one. Throughout the book we use the designation p(x) for the probability
density function of a continuous random variable. For ease of notation, we will
often omit the subscript X and write simply p(x). We will use the designation
p(X = x;) for the probability of a random variable X, where X can take on discrete
values only.



1.5.1.1 Ensemble Averages

The mean value my, or expected value of a random variable X, is defined by

my= E{X} = f xpy(x) dx (1.26)

where E{-} is called the expected value operator. The nth moment of a probability
distribution of a random variable X is defined by

E{X"} = f X"py(x) dx (1.27)

For the purposes of communication system analysis, the most important moments
of X are the first two moments. Thus, n = 1 in Equation (1.27) gives my as discussed
above, whereas n = 2 gives the mean-square value of X, as follows:

B} = [ epo)an (128)



We can also define central moments, which are the moments of the difference
between X and m,. The second central moment, called the variance of X, is de-
fined as

var (X) = E{X— my)’} = f” (x — my)’px(x) dx (1.29)

The variance of X is also denoted as 0%, and its square root, oy, is called the stan-
dard deviation of X. Variance is a measure of the “randomness” of the random
variable X. By specifying the variance of a random variable, we are constraining
the width of its probability density function. The variance and the mean-square
value are related by

ok = E{X? — 2myX + m%)}
= E{X?} — m%

Thus, the variance is equal to the difference between the mean-square value and
the square of the mean.



Revision of Probability theory and random variables




Why is probability important?

Random Variables and Processes let us talk about
quantities and signals which are unknown 1n advance:

The data sent through a communication system 1s
modeled as random

The noise, interference, and fading introduced by the
channel can all be modeled as random processes

Even the measure of performance (Probability of Bit
Error) 1s expressed 1n terms of a probability.



Sample Space and Probability

@ Random experiment: its outcome, for some reason, cannot be
predicted with certainty.

@ Examples: throwing a die, flipping a coin and drawing a card
from a deck.

@ Sample space: the set of all possible outcomes, denoted by (2.
Outcomes are denoted by w's and each w liesin Q, i.e., w € ().

@ A sample space can be discrete or continuous.

@ Events are subsets of the sample space for which measures of
their occurrences, called probabilities, can be defined or
determined.



Random Events

When we conduct a random experiment, we can use
set notation to describe possible outcomes.

Example: Roll a six-sided die.
Possible Outcomes: § ={1.2,3,4.5,0

An event 1s any subset of possible outcomes: 4 ={1,2}

. W

The complementary event: 4=S5-4={345,6]

T'he set of all outcomes 1s the certain event: S

The null event: ¢

[ransmitting a data bit 1s also an experiment



Probability

The probability P(4) 1s a number which measures the
likelihood of the event 4.

Axioms of Probability:
No event has probability less than zero: P(4)>0
P(A)<land P(A)=1= A=S
Let 4 and B be two events such that: AnNB=¢
Then: P(4Aw B)= P(4)+ P(B)
All other laws of probability follow from these
ax10ms



Relationships Between Random Events

* Jomt Probability: P(A4,B)= P(4~ B)
— PrQ*bz.zlbility that b?ﬂ? A and B occur P(4,B)
o Conditional Probability: (4B)= P(B)
— Probability that A will occur given that B has occurred

 Statistical Independence:
— Events A and B are statistically independent 1f:
P(4,B)= P(4)- P(B)
— It A and B are independent then:

P(A|B)= P(A) and P(B|4)= P(B)



Random Variables

* A random variable X(s) 1s a real-valued function of
the underlying event space: s €S

* A random variable may be:

— Discrete-valued: range 1s finite (e.g. {0.1}) or countably
mnfinite (e.g., {1.2.3,...})

— Continuous-valued - range 1s uncountably infinite (e.g. R )

* A random variable may be described by:
— A name: X
— It’srange: X eR
— A description of 1ts distribution



Random Variables

S

X(s,) X(s) X)) X(S)

@ A random variable is a mapping from the sample space S
the set of real numbers.

@ We shall denote random variables by capitat , 1.e. X, Y e
while individual or specific values of the mapping X are
denoted by x(S).



Probability Distribution Function (PDF)

Also called Cumulative Distribution Function (CDF)
Definition: Fy(x)=F(x)=P(X < x)
Properties:
F(x) is monotonically nondecreasing
F(-»)=0
F(o)=1
Pla< X <b)=F(b)-F(a)
While the PDF completely defines the distribution of

a random variable, we will usually work with the pdf
or pmf



Typical Plots of cdf |

A random variable can be discrete, continuous or mixed.

10 F-———-
(a) ,




Typical Plots of cdf I
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Probability Density Function (pdf)

@ [he pdf is defined as the derivative of the cdf:
dFy(x)

x) =
px) T

@ |t follows that:

Plr1 <x<mr)=P(x<x9) — P(x < 11)

r2

= x(il?z)—Fx(il?l)_f Pl dx.

r1

@ Basic properties of pdf:

L. p(2) 20,

2. f N plr)de =1.

3. Ingeneral, P(x € A)= [, p
@ For discrete random variables, |t Is more common to defin:

the probability mass function (pmf): p; = P(x = x;).

@ Note that, for all 7, one has p; > 0 and X:pE = 1.



Probability Density Function (pdf)

dF v (x dF(x
e Defn: pry(x)= X,( ) dE:)

 Interpretations:

or p(x) =

— pdi measures how fast PDF 1s increasing or how likely a
random variable 1s to lie at a particular value

* Properties:



Bernoulli Random Variable

px) F,(x)
% |
A
A l_p |
(1-p) (») |
_ | .
0 | 0 |

@ A discrete random variable that takes two values 1 and 0 with
probabilities p and 1 — p.

@ Good model for a binary data source whose output is 1 or 0.

@ Can also be used to model the channel errors.



Uniform Random Variable

p(x) F.(x)

@ A continuous random variable that takes values between «
and b with equal probabilities over intervals of equal length.

@ [he phase of a received sinusoidal carrier is usually modeled
as a uniform random variable between 0 and 27. Quantization
error 1s also typically modeled as uniform. unt



Example #1: Uniform pdf

(1/10, 0<x<10

plx) = 1 0, else

p(x)

1/10



Gaussian (or Normal) Random Variable

0 I
@ A continuous random variable whose pdf is:

1 T — )2
p) = \/me“{p{( o } )

it and o are parameters. Usually denoted as N (j, 0%).
@ Most important and frequently encountered random variable
In communications.




Example #2: Gaussian pdf

~ (x—my )2

| 2

p(x)=———e 20X
\2no

04

0351

03f

0251

0151

01F

0051

0

.-/l\".

5

» A Gaussian random variable 1s completely

determined by 1ts mean and variance



Example #3 - Rayleigh pdf

o [et:

R=+X{+X3

where X7 and X, are Gaussian with mean 0 and
variance o

* Then R 1s a Rayleigh random variable with pdt:

2/ )
Ve I r/207
pR(I ) ¢
o)
» Rayleigh pdf’s are frequently used to model fading

when no line of site signal 1s present



07
06}
05}
04}
5

03k |

02t |

Rayleigh pdf

011/ \
D I 1 I-. L |
0 : : 4
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Expected Values

» Expected values are a shorthand way of describing a
random variable

 The most important examples are:
oC
- Mean:  E(X)=m, = [xp(x)dx

— 0
co

— Variance: E([ Y "”x]z) = [(x—m, )2 p(x)dx

o

 The expectation operator works with any function:

oo

E[g(X)]= ] g(x)p(x)dx

— o0



Expectation of Random Variables |

Statistical averages, or moments, play an important role in the
characterization of the random variable.

@ The expected value (also called the mean value, first moment)
of the random variable x is defined as

o0

my = E{x} = / I xr pX) dx, (13)

—00

where E' denotes the statistical expectation operator.

@ In general, the nth moment of x is defined as

Bix"} = / T 0 du (14)

—00

@ For n =2, E{x*} is known as the mean-squared value of the
random variable.



Expectation of Random Variables |

@ [he nth central moment of the random variable x is:

E{y} = E{(x — my)"} = / T —my)" 5()( dr. (15)

@ When n = 2 the central moment is called the variance,
commonly denoted as o2

02 = var(x) = E{(x — my)?*} = /x (x —my)? pix Az
h 7 (9

@ [he variance provides a measure of the variable's
‘randomness’ .

@ [he mean and variance of a random variable give a partial
description of its pdf.



Expectation of Random Variables Il

@ Relationship between the variance, the first and second
moments:

02 = B{x*} — [E{x}]* = B{x*} —m?. (17)

@ An electrical engineering interpretation: The AC power equals
total power minus DC power.

@ The square-root of the variance is known as the standard
deviation, and can be interpreted as the root-mean-squared
(RMS) value of the AC component.



Exarmple # 1> Urniforrmn: pdf

- p(l)—{l éf} (}Ee:!lcsi 10
PCxD
1/10
o 10 h
Example #1 (continued)
e Mean: o 10 1 2 10
my = |[x-p(x)dx= | x-—dx=|- =5
- ) ) 10 20
) — o0 0O 0
e Variance:
o0 10
5 5 5> 1 25
ocr= [(x=5)"-p(x)dx = | (-1_5) ‘Od ~— 3
—o0 0O -

« Probability Calculation:

9 9

. -1
P(6=<x=<9)=|p(x)dx=[-—dx =03

6 619



The Gaussian Random Variable

(a) A muscle (emg) signal
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1 (x) (1/volts)

fad

[

(b) Histogram and pdf fits

4 . .
| |Histogram
sl i Gaussian fit
) h - - - Laplacian fit
I
3 e
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Gaussian Distribution (Univariate)

Range (+kox) k=1 k=2 k=3 k=4

P(mx —hkox <X < myx —koyx) 0.683 0.955 0.997 0.999
Error probability 10-2 10~% 10~ 10-8

Distance from the mean 309 372 475 561 |




