1.5.2 Random Processes

A random pmcesa{ X(A, 1)|can be viewed as a function of two variablesj an event A

and time.|Figure 1.5 illustrates a random process. In the figure there are N sample

functions of time, {X/(1)}. Each of the sample functions can be regarded as the

output of a different noise generator} For a specific event A;, we have a single time

function X(4, f) = X(f) (i, a sample function|. The (otality of all sample

functions is called an ensemble.[For a specific time ¢, X(A, 1) 1s a random variable|

X(1,) whose value depends on the event,

Finally, for a specific event, A = A; and a

specific time f = t;, X(A,, ;) is simply a number. For notational convenience we

shall designate the random process by
upon A be implicit.

X(t), and let the functional dependence



Random process

A random process is a collection of time functions, or signals,
corresponding to various outcomes of a random experiment. For each
outcome, there exists a deterministic function, which is called a sample
function or a realization.

Random
_ N
/{Xz(tk)}i=1 variables

>Sample functions
or realizations

Xn(t) (deterministic
) function)

Real number

Lecture 1



1.5.2.1 Statistical Averages of a Random Process

the mean and autocorrelation function are often adequate for the needs
of communication systems.

the mean of the random process X(¢) as

E{X(t;,)} = f XPy (x)dx = m_(t,)

where X(f,) 1s the random variable obtained by observing the random process at
time #, and the pdf of X(z,), the density over the ensemble of events at time ¢, is
designated py, (x).

We define the autocorrelation function of the random process X(f) to be a
function of two variables, t; and 1,, given by

Rx(t1,1;) = E{XU i _)X(fj_)} - f J x1x2fX(z1},xEr2;(x1: x2) dxydx;

Fxity.xiey(X1; X%2) 18 the second-order probability density function of the process
The joint probablllty denS|ty functionof the random variables X(t1) and x(t2)



1.5.2.2 Stationarity

A random process X{r) 1s said to be stationary in the strict sense if none of its
statistics are affected by a shift in the time origin. A random process 1 said to be
wide-sense stationary (WSS) 1f two of 1ts statistics, its mean and autocorrelation
function, do not vary with a shift in the time origin. Thus, a process is WSS if

E{X(t)} = my= aconstant (1.32)

and

Ryt 1) = Rylt = 1) (133)




1523 Autocorrelation of a Wide-Sense Stationary Random Process

Just as the variance provides a measure of randomness for random variables,
the autocorrelation function provides a similar measure for random processes. For
a wide-sense stationary process, the autocorrelation function is only a function of
the time difference =1, - 1y, that is,

Rir) = E{X(O)X( +7)} for-% <7< (1.34)




Summary : Autocorrelation

e Autocorrelation of an energy signal

Ry(7m) = z(r) *x*(—7) = [, z(t)z™(t — 7)dt
e Autocorrelation of a power signal

Ro(r) = tim = [ 2t)w*(t — P)at
T) = — x(t)z™ (L —

* T—oo T J—T/2 "

— For a periodic signal:

Ro() = IT% ?2 z()z*(t — 7)dt

» Autocorrelation of a random signal

— For a WSS process: Rx(t;,t;) = E[X(2;)X*(¢;)]

Rx(r) = E[X(6)X*(¢t — 7)]



l. Ry(7)=Ry(-1) symmetrical in T about zero

2. Ry(1) £ R(0) forall maximum value occurs at the origin

3. Ry(7) & G () autocorrelation and power spectral density form a
Fourier transform pair

4. R(0)=E[X*(1)] value at the origin is equal to the average power
of the signal

Figaky Slowly fluctuating
randaom process

Rapidly fluctuating
random process

O
-RE 5.8 Ilustrating the auiocorrelation. functions of slowly -
pidiy fluctuating random processes.



1.5.3 Time Averaging and Ergodicity

[To compute my and Ry(r) by ensemble averagingJ we would have to average
across all the sample functions of the process and would need to have complete
knowledge of the first- and second-order joint probablity density functions. Such
knowledge is generally not available,
When a random process belongs to a special class, known as an fergodic
| process, its time averages equal its ensemble ave@and the statistical properties
of the process can be determined by[time averaging over a single sample function]of
the process. For a random process to be ergodic, it must be stationary in the strict
sense. (The converse is not necessary.) However, for communication systems,

where we arc satisfied to meet the conditions of wide-sense stationarity, we are
Interested only in the mean and autocorrelation functions.




We can say that a random process is ergodic in the mean if

i
my= lim ];’TJ X(1)di (L35)

[=% |
-1/

and 1t 1s ergodic in the autocorrelation function if

12
R7) = lim 1 /Tj X(OX(1 + 1) de (1.36)

[=% 1

We use time averaging instead of ensemoble
averaqging




averages equal ensemble averages for ergodic processes, fundamental electrical
engineering parameters. such as dc value, rms value, and average power can be
related to the moments of an ergodic random process. Following is a summary of

L. The quantity my = E{X(1)} is equal to the dc level of the signal.

2. The quantity m’ is equal to the normalized power in the dc component.

3. The second moment of X(¢), E{X*(r)}, is equal to the total average normalized
power,

4, The quantity V E{X*(r)} is equal to the root-mean-square (rms) value of the
voltage or current signal.

5, The variance oy is equal to the average normalized power in the time-varying
or ac component of the signal,

b 3 ] 2
6. If the process has zero mean (i.e., my = my = 0), then o’y = E{X"} and the
variance is the same as the mean-square value, or the variance represents the
total power in the normalized load.

7. The standard deviation o is the rms value of the ac component of the signal.
8. Ifm;l-: (), then Ty is the rms value of the SigHHL 2 _ E{XQ} _ [E{XHQ _ E{XQ} B mi.




1.5.4 Power Spectral Density and Autocorrelation of a Random Process

A random process X(f) can generally be classified as a power signal having a power
spectral density (PSD) G y(f) of the form shown in Equation (1.20). Gx(f) 1s partic-
ularly useful in communication systems, because it describes the distribution of a
signal’s power in the frequency domain. The PSD enables us to evaluate the signal
power that will pass through a network having known frequency characteristics.
We summarize the principal features of PSD functions as follows:

L Gy(f)20 and is always real valued
2. G(f)=Gx-T) for X(r) real-valued
3. Gyl(f) © Ry(7) PSD and autocorrelation form a Fourier transform pair

4, Py= f Gy(f) df relationship between average normalized power
- and PSD




Summary . Random process ...

Strictly stationary: If none of the statistics of the random process are
affected by a shift in the time origin.

Wide sense stationary (WSS): If the mean and autocorrelation function
do not change with a shift in the origin time.

Cyclostationary: If the mean and autocorrelation function are periodic in
time.

Ergodic process: A random process is ergodic in mean and autocorrelation,
If

i L 772 X(t)dt
and mX = T'-T:of/_T/z 2
1 [T/2
Rx(r) = lim — X(#)X*(t —7)dt

T—oo1 J-T/2



Numerical Example

Random bimnary

P A ]
sequence

sample waveform from a WSS random process, Xf(r.).

Xt —Tq)

same sequence displaced ; seconds in time;

Lowe bit rate

+1

[ 2

0 = : =
| T ] | -
i i iy (de wvalue)
- | | .

{aa)

+ 1 1 -
1=
E L] : e i

O
1

+1 m% (dc power)
!
y 1 T2 A )
= i — - h |
Rx(t) = lim o J'_TQ Xie) Xit — 02 | © o T6 ¢
. S
X(t) and X(t - ) and finding the average value s
) i)
Il x (0} = total average povver
g S Wl o for|t| <
RI{T} =‘{ T 0 Rx{"-l.’*ll
o for|lc| = 9 i -
—T o] = | T
)
G ()
I;:Gx{fj adf = total average powar
= sin nf T2
Con () = T( e
X W I B
T r

Figure 1.6

Auvutocorrelation and power spectral density.



I the pulse duration is shor’rerl
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Bandwidth of signal ...
o Different definition of bandwidth:

a) Half-power bandwidth a) Fractional power containment bandwidth
b) Noise equivalent bandwidth b) Bounded power spectral density
c)  Null-to-null bandwidth c) Absolute bandwidth
Ga(f)
"""" sinmfT\’ e
i ' Gylf) = T(—----;l‘ ) = Tsine T (1.38)
i Wi 'IT”
fe f
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(a)

Half-power bandwidth.| This is the interval between frequencies at which

G, (f) has dropped to half-power, or 3 dB below the peak value.

(b)

Equivalent rectangular or noise equivalent bandwidth. |The noise equivalent

(c)

(d)

(e)

(f)

bandwidth was originally conceived to permit rapid computation of output
noise power from an amplifier with a wideband noise input; the concept can
similarly be applied to a signal bandwidth. The noise equivalent bandwidth

W, of a signal i1s defined by the reiaﬁonship Wy = P, /G (f.), where P, is the
total signal power over all frequencies and G (f.) 1s the value of G (f) at the
band center (assumed to be the maximum value over all frequencies).

Null-to-null bandwidth.| The most popular measure of bandwidth for digital

communications 15 the width of the main spectral lobe, where most of the
signal power is contained. This criterion lacks complete generality since some
modulation formats lack well-defined lobes.

Fractional power containment bandwidth| This bandwidth criterion has been

adopted by the Federal Communications Commission (FCC Rules and Regu-
lations Section 2.202) and states that the occupied bandwidth 1s the band that
leaves exactly 0.5% of the signal power above the upper band limit and
exactly (.5% of the signal power below the lower band limit. Thus 99% of the
signal power is inside the occupied band.

Bounded power spectral density] A popular method of specifying bandwidth is
to state that everywhere outside the specified band, G (f) must have fallen at
least to a certain stated level below that found at the band center. Typical
attenuation levels might be 35 or 50 dB.

Absolute bandwidth.| This is the interval between frequencies, outside of

which the spectrum is zero. This is a useful abstraction. However, for all
realizable waveforms, the absolute bandwidth 1s infinite.



1.12 The power spectral density of a random process X(¢} is shown in Figure P1.12. It consists
of a delta function at f = 0 and a triangular component.

(a) Determine and sketch the autocorrelation function Rx{7) of X(¢).
{b) What is the DC power contained in X{¢)?
(c) What is the AC power contained in X(z#)?

Sx(f)

FiGure P1.12



(a) The power spectral density consists of two components:
(1) A delta function 6(t) at the origin, whose inverse Fourier transform is one.
(2) A triangular component of unit amplitude and width Efo, centered at the origin;

the inverse Fourier transform of this component is fD sincz(for).

Therefore, the autocorrelation function of X(t) is

RygfCr?>» = 1 =+ £, sinca(f’o-:)

which Is sketched below:s

(b) Since Rxﬁt) contains a constant component of amplitude 1, it follows that the dc
power contained in X(t) is 1.

(¢) The mean-square value of X(t) is given by

E[X2(t)] Ry (0)

1 + fﬂ

The ac power contained in X(f) is therefore equal to fo.



