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Figure 5.2 Additive white Gaussian noise (AWGN) model of a channel.
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Figure 5.3 (a) Synthesizer for generating the signal s-(t).@
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5.3 Conversion of the Continuous
AWGN Channel into a Vector Channel

Suppose that the input to the bank of N product integrators or correlators in Figure 5 3
is not the transmitted signal s;(¢) but rather the received signal x(t) defined in accordang
with the idealized AWGN channel of Figure 5.2. That is to say,

0=t=T
i=1,2,....,.M
where w(t) is a sample function of a white Gaussian noise process W(t) of zero mean apg

power spectral density No/2. Correspondingly, we find that the output of correlator j, say
is the sample value of a random variable X;, as shown by ’

(5.28)

x(t) = s;(t) + wit), {

T
= L ©t)pitdt S
| 29
"=$,'j+w);, i=1,2,...,N )

The first component, s;;, is a deterministic quantity contributed by the transmitted signa|
s;(#); it is defined by

T
$z = L si(t)p;(t)dt {5.30)

The second component, w;, is the sample value of a random variable W; that arises because
of the presence of the channel noise w(t); it is defined by

w,; = L wit),(t)dt (5.31)




STATISTICAL CHARACTERIZATION OF THE CORRELATOR QUTPUTS

Let x; denote the random variable of the output of correlator J-

The mean of X, for signal s,(¢) is (from 5.29)
,le, — E[X_]]

J

s, I+ £,

ij

— % (5.35)
ol = E[(Xj — s,.J.)2J
— rlw2] (5.36)

A ccording to (5.31)
W, = [o W (D@, (2)dzr |
o = E[[OTVV(I)¢J. 2z [5 W ()P, (u)du]

= [T 10 @, (DD, () EIW (HOW (0> |dzcdee
= Jo Jo @, (P ; (IR, (z,1e)drdre

13 @, (2ddr = (5.41)

S(z —u) (5.39)
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=E[(Xj _Sij)(Xk —Sik)]
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The X ; are mutually uncorrelated .
Since the X ; are Gaussian , they are statscally independent.

i.e the sampled correlator outputs are independent Gaussian

random variables.




5.5 Coherent Detection of Signals in Noise:
Maximum Likelihood Decoding

Suppose that

" each time slot of duration T seconds, one of the M possible signals s:(fh

,(8), . .. , Sy(t) is transmitted with equal probability, 1/M. For geometric signal represél

tation, the signalls;{#), i = 1,2, ..., Ml is applied to a bank of correlators, with a common

input and supplied with an a
correlator outputs define the signal vector s;. |
good as knowing the transmitted signal s;{¢] itself, and vice versa, we may represent $

ropriate set of N orthonormal basis functions, The resu!tiﬂg
Since knowledge of the signal vector §;15 #

U

by a point in a Euclidean space of dimension N < M. We refer to this point as the frar

muied sighal pomt or message pomi, 1he set of message ponts corresponding to the set
{s,-(t)]:-f,?l Fs called a signal constellation.

of transmitted signals
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Signal constellation for (a) M-ary PSK and (b)
corresponding M-ary QAM, for M [¥] 16.



However, the representation of the received signal x(¢) is complicated by the presence
of additive noise w(z). We note that when the received signal x() is applied to the bank
of N correlators, the correlator outputs define the lobservation vector x| From Equation
(5.48), the vector x differs from the signal vector s; by thdmoise vector wjwhose orientation
is completely random. The noise vector w is completely characterized by the noise wt);

Now, based on the observation vector x, we may represent the received signal x(¢)
by 4 point in the same Euclidean space used to represent the transmitted signal, We refer
to this second point as the|received signal point.|The received signal point wanders about
the message point in a completely random fashion, in the sense that it may lie anywhere
inside a| Gaussian-distributed “cloud” centered on the message point, [This is illustrated in
Figure 5.7a for the case of a three-dimensional signal space. For a particular realization
of the noise vector w (L.e., a patticular point inside the random cloud of Figure 5.74), the
relationship between the observation vector x and the signal vector s; is as illustrated in
Figute 5,7b.
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Figure 5.7 lllustrating the effect of noise perturbation, depicted in (a), on the location of the
received signal point, depicted in (b).

AWGN is
equivalent to an N-dimensional vector channel described by the observation vector

X =8 + W, i=1,2,..., M (5.48)




Example of samples of matched filter output for some
bandpass modulation schemes
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Suppose that, given the observation vector x, we make the decision # = n1,. The
probability of etror in this decision, which we denote by P,{m,| %), is simply

P.(m] x) = P(m; not sent|x)
5.52
= 1 — P(m, sent|x) 15-52)

The decision-making criterion is to minimize the probability of error in mapping each
given observation vector X into a decision. On the basis of Equation (5.52), we may there-
fore state the optimum decision rule;

Set #1 = M if

)
P(m; sent|x) = P(m, sent|x)  forallk # (5.33)




where k = 1, 2, ..., M. This decision rule is referred to as the|maximum a Posterigy;
probability (MAP) rule.

The condition of Equation (5.53) may be expressed more explicitly in terms of the
a priori probabilities of the transmitted signals and in terms of the likelihood functigp
Using Bayes’ rule in Equation (5.53), and for the moment ignoring possible ties in h,
decision-making process, we may restate the MAP rule as follows:

Set 1 = m; if

E Pkf}((zl;ﬂk) is maximum for & = i
X

where py is the a priori probability of transmitting symbol 1, fx(x|#,) is the conditiong]
probability density function of the random observation vector X given the transmissioy
of symbol 11, and fx{x} is the unconditional probability density function of X. In Equatioy,
(5.54) we may note the following:

(5.54)

» The denominator term fx(x) is independent of the transmitted symbol.
& The a priori probability p, = p; when all the source symbols are transmitted with

equal probability.
> The conditional probability density function fx(x|#2;) bears a one-to-one relation.
ship to the log-likelihood function l(mz.). =% ., — ..,

This decision rule is referred to as the| rnaximum Lkelibood rule) and the device for its
implementation is correspondingly referred to as the| maxisnum likelibood decoder} Ac-
cording to Equation (5.55), a maximum likelihood decoder computes the log-likelihood
functions as metrics for all the M possible message symbols, compares them, and then
ides in fay maximum. Thus the maximum likelihood decoder differs from the
maximum & posteriori decoder|in that it assumes equally likely message symbols.




| graphical interpretation of the maximum ikelihood aecisi(_m |

rule. Let Z denote the N-dimensional space of all possible observation vectors x. We refer
to this space as the observation space. Because we have assumed that the decision.rule
must say #1 = m;, wherei = 1,2, ..., M, the total observation space Z is cqrrespondmgly
partitioned into M-decision regions, denoted by Zi, Z,, . .., Zp. Accordingly, we may
restate the decision rule of Equation {5.55) as follows:

[ Observation vector x lies in region Z, if ] 5.59

the Euclidean distance | x — s | is minimum for & = i

Equation {5.59) states that the maximum Jikelihood decision rule is simply to choose the
message point closest to the received signd point, which is intuitively satisfying,




|| x — s || is the Euclidean distance
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FIGURE 5.8 Illustrating the partitioning of the observation space into decision regions for the
case when N = 2 and M = 4; it is assumed that the M transmitted symbols are equally likely,

M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal
energy, E, and equal probability.



In practice, the need for squarers in the decision rule of Equation (5.59) is avoided
by recognizing that

N N N N
2 (5 = syl = 2 xf — 2 3 xmy + Y sk (5.60)

j=1 ;=1 j=1

The first summation term of this expansion is independent of the index & and may therefore
be ignored. The second summation term is the inner product of the observation vector x
and signal vector s;. The third summation term is the energy of the transmitted signal
sg(t). Accordingly, we may formulate a decision rule equivalent to that of Equation (5.59)
as follows:

Observation vector x lies in region Z, if
2 xl'Sk,' - ‘2‘ Ek iS maXiInum for k =
i=1
where E, is the energy of the transmitted signal s, (£):
N
Ek = 2 5%}. ‘ (5.62)
j=1

From Equation (5.61) we deduce that, for an AWGN channel, the decision regions
are regions of the N-dimensional observation space Z, bounded by linear [(N — 1)-
dimensional hyperplane] boundaries. Figure 5.8 shows the example of decision regions for



Summary of Coherent Detection of signals in Noise ML Decoding
(1) Analytically
(2) Graphically



Summary of Coherent Detection of signals in Noise ML Decoding (1)
Detection problem :

Given x ,perform a mapping from X to an estimate 77z;: of 72z
in a way that would minimize the probability of error.

The prob.of error denoted b Pe(miIX) is

Pe(mi|X) = P (i not sent Ix)
— 1 — P (7 sent [ <) (5.52)
The optimum decsion ruleis
set rr = rm: if
P (rmisent Ix) = P(mxrxsent Ix) for all kK = ¢ (5.53)

which is also called the maximum a posteriori probability
(MAP) rule.

In terms to the a priori prob. of {mi}, using Bayes'rule .,
we may restate the MAP rule as

set 772 = mi if
Py fr (x|,
S (X)

(5.53) = P(mn, sent IX) is maximum for i = k& }

1is maximum for k =7 (5.54)

where p, is the a priori prob. of 7z,
Note that
1. £, (x)is indep. of {m: }
2 _If {m: jare equally likely , Pr =DP;, = P

P(A|B)P(B)
P(A)

P(B|A) =

" Baves’ rule..

P(AB
P(B|A) -—-—If( )




Summary of Coherent Detection of signals in Noise ML Decoding-Graphically (2)

(5.55) 1s called as the maximum likelihood rule.

The maximum likelihood decoder differs from the
maximum a posteriori decoder (Assum. of p, = constant )
IL.et Z denote the N - dim space (observation space).

We may partition Z into M - decision regions denoted by
ZI’ZZ>'°”ZM

Observation vector X liesin Z; if

N 2

> Cx;; —Skj)2 :”X_Sk” ismin. for k =72 (5.57)
=1

— x e Z, .if ||x —s,]||is min. for &£ =i (5.59)

—> to choose the message point closest to the

received signal point.

A4 2 "5 d > NV N =
J_Ez,l(xj — S )T = jélxj — 23 x ;5 +jz:1skj (5.60)
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- 5.6 Correlation Receiver [ s (;) } are equally likely .
The correlation receiver consists of two parts :
+* detector (correlator)

+* decoder

Carrier wave
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FicurE 6.2 Functional model of passhand data transmission system.



The optimum receiver of Figure 5.9 is commonly referred to as a correlation receiver.
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FIGURE 5.9 ({a) Detector or demodulator. (b) Signal transmission decoder.



[ 5.6 Correlation Receiver

From the material presented in the previous sections, we find that for an AWGN channel
and for the case when the transmitted signals s;(z), 5, .., Sult) are equally likely, the

optimum receiver consists of two subsystems,| which are detailed in Figure 5.9 and de

- >N
——

scribed here:

1. The detector part of the receiver]is shown in Figure 5.92. It consists of a bank of M
product-integrators or correlators] supplied with a corresponding set of coherent
reference signals or orthonormal basis functions ¢y(t), ¢a(t), ..., énit) thar afe
generated locally. This bank of correlators operates on the received signal x(t)
0 <t < T, to produce the observation vector X,

& (2

pes
jt-:i dz  peeeeZ— X Observation |

b % = |
. . Vet;tor ‘ S. I i n
: X igna ) m
&) 21 I Detector transmission —-P"‘""
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: |
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2. The second part of the receiver, namely, the|signal transmission decoder|is showni
Figure 5.9b. It is implemented in the form of a (maximum-likelthood decoder)tha
operates on the observation vector x to produce an estimate, #1, of the transmittet
symbol #3;, i = 1, 2,..., M, in a way that would minimize the average probabili
of symbol error. In accordance with Equation (5.61), the N elements of the obser
vation vector x are first multiplied by the corresponding N elements of each of tht
M signal vectors s,, s, . - - 5 Sy, and the resulting products are successively summét
in accumulators to form the corresponding set of inner products IxTs [k=1,2,..
M}. Next, the inner products are corrected for the fact that the transmitted !
energies may be unequal. Finally, the largest in the resulting set of numbers is selected
and an appropriate decision on the transmitted message is made.

Inner-product calcuiator

i
i ;x §; - '
Accumulator -
| % P % -
““““““““ , Observation vector x lics in region Z, if
o the Buclidean distance | x ~ s, | is minimum for k =
2
Accumulator Select :
X T d largest  —> Estls:ate
J 1 . Observation vector x lies in region Z; if
2 252 N
1. : :
D xSy — 3 E, is maximum for k = i
=1
T
)_% o Accumulator Lt where E,, is the energy of the transmitted signal s (¢):
+
- T N
Ek . Si'-
SM %EM ’Zl '



> ExampLE 4.1 Matched Filter for Rectangular Pulse

Consider 2 signal g(#) in the form of a rectangular pulse of amplitude A and duration T, z
shown in Figure 4.2a. In this example, the impulse response Fk(z) of the matched filter has
exactly the same waveform as the signal icself. The output signal g,(z) of the matched filrer
produced in response to the input signal g(2) has a triangular waveform, as shown in Figure
4.2b.

The maximumn value of the output signal g,(t) is equal to kA*T, which is the energy of

the input signal g(2) scaled by the factor k; this maximum value occurs at £ = T, as indicated
in Figure 4.256.

2

A
Energy = A®T
b4
0 T
(a)
Matched filter
outout g.(n
kAT m——— —— —— —
i
1
L 4
o T
(b)
Output of
integrate-and-dump
circuit
AT —F—————— ——
¢
0 T

()
FiCURE 4.2 (a) Rectangular pulse. (b)) Matched filter output. (¢) Intcgrator output.



8 EQUIVALENCE OF CORRELATION AND MATCHED FILTER RECEIVERS
Recall the output of the matched filter

y,(0)=[_x(@h,(t-7)dT  (5.63)
let| h,(1)=9,(T —7) (5.64)
() =] x(0);(T -t +7)dT (5.65)
sampleats=T|,and ¢;(r)=0,7(0,0r )T
y;(T)=["_x(v);(7)dt
=[, x(0),(x)dr  (5.66)

T

correlator
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FIGURE 5.10 Detector part of matched filter receiver; the signal transmission decoder is as
shown in Fig. 5.9b.



5.7 Probability of Error

readily see that the average probability of symbol error, P, is

Y .
P, = E p; P(x does not lic in Z;|m; sent)

awl

=—E P(x does not lie mZ\m sent)

;-1

-1 i

> P(x lies in Z;|m; sent)

f=]

Pc

where we have used standard notation to denote the probability of an

follows:

Y 2 j fx(x|m,) dx

(5.67)

event and the
conditional probability of an event. Since x is the sample value of random vector X, we
‘may rewrite Equation (5.67) in terms of the likelihood function (when s, is sent) as

(5.68)



summary
5.7 Pmlmbility of Error

The average prob. of symbol error

M |
P, =) p,P(x does not liein Z; |mi sent)
=1

M
= _1\172 P(x does not lie in Zi |mi sent) (5.67)
=1
1 M
=1-—73 P(x lies in Zi |mi sent) (5.68)

M =1






Invariance of P.to Rotation and Translation

Changes of coordinates does not affect Pe.

1. P. dependson ”X = £, ”

If a signal constellation is rotated by an orthonormal
transformation, that is ,

Siroate = Q8;, 1=12,....M
where Q is an orthonormal matrix, then the probability
of symbolerror P, incurred in maximum likelihood
signal detection over an AWGN channel is completely
unchanged.
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Figure 5.11 A pair of signal constellations for illustrating the
principle of rotational invariance.



For Translation
=s;,—a,i=12,...M (5.77)
=X—a (5.78)

S

1,translate

X

translate

X —S

1,translate

=[x —s,] for all i (5.79)

The priciple of translational invariance :

translate

=|[x—a-—s; +a

It a signal constellation is translate by a constant
vector amount , then the probility of symbol error
P, incurred in maximum likelihood signal detection

over an AWGN channel is completely unchanged.



Minimum Energy Signals
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Figure 5.12 A pair of signal constellations for illustrating the principle of translational invariance.

consider { m, } represented by {s l.}
The average energy of {s i} translated by a

Eunmine = 2| 5= P, (5.80)
p; : the prob. of m,

2 2 2
['s: =al =] s —2a"s; +[ a



M 2 M T M
ftranslate = 21”81" Pi _2_21a i Di +"a|| Ellpl
= = =

=& —2a" E[s]+[Ja (5.81)
The energy ch original constellation
M
Els]=3sp, (5.82)
i=l1
Wumsise _ 0 q = Efs] (5.83)

da
51:maslate,min = 5 o "a min

The minimum energy translate :

Given a signal costellation { S, }I.ZI , the corresponding signal

constellation with minimum average energy is obtained by

subtracting from each siganl vector s, in the given constellation

an amount equal to the constant vector E [s], where E [s]is defined

by Equation (5.82)






1.If the constellation is circularly symmetric, P, (m;, ) is
the same for alli (e. q M - ary PSK)

I;leﬁc(z \/_ , foralli  (5.92)

2. Defined . =minimumd;, | (5.93)




Q Function & erfc

. The error function denoted by erf(x), is defined in a number of different ways in the lice,.
ature. We shall use the following definition:

f4

erf{u —T- exp(—2z%) dz

The error function has two useful properties:
(i) erf(—u) = —erf(u)

This is known as the symmetry relation. -
{ii} As u approaches infinity, erf(x) approaches unity; that is,

\/_J exp({—z?) dz = 1

The complementary error function is defined by

erfc(u) = \/i;r [ exp(—27) dz

which is related to the error function as follows:

erfc(u) = 1 — erf(u)



The complementary error function is defined by

erfc(u) = % ( exp{—2~) dz

vvuwa.vv-- v o —  — —( —— — -

|tk Con ] [quo k[ o 5] |

The Q-function defines the area under tbe standardzzed Gaussian tail. The Q-function s
related to the complementary error

‘Z——a—L

”fc :—%—; ('%\)AX <
Co\ﬁirg} e ing # = v/\V/2, we have

erfc(u) = 20(V2u)







