Digital Modulation Techniques

BPSK
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FicURE 6.2 Functional model of passhand data transmission systent.

Passhand Transmission Meodel

In a functional sense, we may model a passband data transmission system as shown i
Figure 6.2. First, there is assumed to exist a mmessage source that emits one symbol every
T seconds, with the symbols belonging to an alphabet of M symbols, which we denote by
715, e, - - - s 1ing. The a priori probabilities P(m,), P(##13)s - - - , P{rrps) specify the message
source output. When the M symbols of the alphabet are equally likely, we write

p: = Plm,)

6.6
—% for all i (6:6)




Coherent detection

Coherent detection

requires carrier phase recovery at the

receiver and hence, circuits to perform
phase estimation.

Sources of carrier-phase mismatch at the
receiver:

= Propagation delay causes carrier-phase offset in
the received signal.

= The oscillators at the receiver which generate

the carrier signal, are not usually phased locked
to the transmitted carrier.



Coherent detection ..

Circuits such as Phase-Locked-Loop (PLL) are
implemented at the receiver for carrier phase

estimation (a=4 ).

r(t) = g, (1)
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i BINARY PHASE-SHIFT KEYING

In a coherent binary PSK system, the pair of signals s,(¢) and s,(z) used to represent binary

symbols 1 and 0, respectively, is defined by

si{t) = \/% cos(27f.t)
b

so(t) = 2k, cos(2wft + o) = — 2L, cos(27f.t)
v Ty T

(6.8)

(6.9)

where 0 = t = T, and E, is the transmitted signal energy per bit. To ensure that each
transmitted bit contains an integral number of cycles of the carrier wave, the carrier fre-
quency f; is chosen equal to #./T, for some fixed integer #.. A pair of sinusoidal waves
thar differ only in a relative phase-shift of 180 degrees, as defined in Egautions (6.8) and

{6.9), are referred to as antipodal signals.

From this pair of equations it is clear that, in the case of binary PSK, there is only

one basis function of unit energy, namely,

O (t) = \/z cos(27f.t), 0=t<T,
T, :

(6.10)



Then we may express the transmitted signals s,{t) and s,(¢} in rerms of

.(2) as follows:
sit) = VE,¢4t), 0=1:<T, (6.11)
and

$Ht) = ~VE.q(t), 0=:<T, (6.12)
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WE hour;dal'!-"

Regian - Region
Z, Zy

|
}
i
|
1
I
- 4
Message 01
i
1
k

FicuRre 6.3 Signal-space diagram for coherent binary PSK system. The waveforms depicting the
transmitted signals s;{(¢) and sa(2), displayed in the inserts, assume ». = 2.



Error Probability of Binary PSK

' ' sion 1 f symbol 1 or s
To realize a rule for making a decision fav:c{r 0 _
Equatic?n (5.59) of Chapter 5. Specifically, we partion the signal space o

1ons:

i
ymbol 0, we app
f Figure 6.3 100

» The set of points closest to message point 1 at +V E..
» The set of points closest to message point 2 at —V E;.

To calculate the probability of making an error of the first kind, we note from Figure
6.3 that the decision region associated with symbol 1 or signal s,(#} is described by

where the observable element x, is related to the received signal x(f) by

Ty .
Xy = J;_ x(H) (¢} df (6.15)




The conditional probability density function of random variable X, given that symbol ¢
[i.e., signal s,()] was transmitted, is defined by

4 | 1 1 )
fX1(x1|G) = N=YA EXp _E (1 — sz.l}zjl
L ﬂ —
1 1
— S + '\,JE v
k \’/T—M] €Xp ] Nﬂ (xl b) ] J

(6.16)

The conditional prnbablhty of the receiver deciding in favor of symbol 1, given that symbol
0 was transmitted, is therefore

( o
P1o :J‘ Fx(x1|0) dxy

FJ exp[ Nﬂ(x1+'\/_ }

~

Putting

G

(6.17)

- {6.18)



and changing the variable of integration from x, to z, we may rewrite Equation (6.17) In

the compact form

1 o
P10 = ﬁfm exp{~2°) dz

_1 [Ee
=3 erfc( Nﬁ)

where erfc(-) is the complementary error function,

(6.19)

Consider next an error of the second kind. We note that the signal space of Figupe
6.3 is symmetric with respect to the origin. It follows therefore that Py, the conditiony)
probability of the receiver deciding in favor of symbol 0, given that symbol 1 was trgp,
mitted, also has the same value as in Equation (6.19).
Thus, averaging the conditional error probabilities p;o and po;, we find that the
average probability of symbol error or, equivalently, the bit error rate for coberent binary

PSK is {assuming equiprobable symbols)

P, = 1 erfc

2

(/%)

(6.20)

As we increase the transmitted signal energy per bit, E;, for a specified noise spectry|
density N, the message points corresponding to symbols 1 arfd (0 move fl.lI."l'.l'll‘E‘.'l' apart, and
the average probability of error P, is correspondingly reduced in accordance with Equatioy

(6.20), which is intuitively satisfying.



Decision

Rappaport boundary

1
I .
Region ol Region
Z, | 24
1
~E, | VEp
- _! — - - ¢I1
Message 01 Messase 3
pnzlnt : F"U‘l'-“ $31 = J-.;. s, t)h (8] dt
- ] 1 Ertn. o -I-V'E_;.
Zi 0 ~ = ’ '
phsm s Xy = J; x(t)d(2) dt
Th
The conditional probability density function of random variable X,, given that symbol 0 S = I sathale) dt
[i-e., signal s,(¢)] was transmitted, is defined by !
g = -VE
1 i
f:'l'1[x1|0) = m €Xp _“ﬁ; oy — slt}z]
‘ - (6.16)
_ 1
VN,

G= J; fx-JIa‘UD \
Jy = ~x :
VN, o exp[miﬂ {(x; + VE,) ] dx,

|

AN

= A exp| -y + VE| ke pUvfent1)
Ve | g A

] t — T
Putting z= \—/ITO (x; + VEy)

Error area if sent +1

Figure 3.16 Conditional probability density function for the received signals.



Rappaport

s (e
Pro = ﬁf . exp(—z") dz

1 E,
=3 erfc( Nc)

where erfc(*) is the complementary error function.

(6.19)

of an error distance 4in signal space:

0 d
L} gesk = m



Bit error performance of coherent BPSK system
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FIGURE 6.4 Block diagrams for (2) binary PSK transmitter and (b) coherent binary PSK

receiver.



Power Spectra of Binary PSK Signals

From the modulator of Figure 6.44, we see that the complex envelope of a binary
PSK wave consists of an in-phase component only. Furthermore, depending on whether
we have symbol 1 or symbol 0 at the modulator input during the signaling interval
0 =1 =T,, we find that this in-phase component equals +g(¢) or —g{t), respectively,
where g{f) is the symbol shaping function defined by

2E,
gty =y 1,
0, otherwise

0=t=T, (6.21)

We assume that the input binary wave is random, with symbols 1 and 0 equally likely and
the symbols transmitted during the different time slots being statistically independent. In
Example 1.6 of Chapter 1 it is shown that the power spectral density of a random binary
wave so described is equal to the energy spectral density of the symbol shaping function

divided by the symbol duration[ The energy spectral density of a Fourier transformable

signal g(¢#] is defined as the squared magnitude of the signal’s Fourier transformi. IHence,

the baseband power spectral density of a binary PSK signal equals
_ 2E, sin*(wT,f)
(7Tof (6.22)
= 2E, sinc*(T,f}
This power spectrum falls off as the inverse square of frequency, as shown in Figure 6.5.
Figure 6.5 also includes a plot of the baseband power spectral density of a binary

. FSK signal, details of which are presented in Section 6.5. Comparison of these two spectra
is deferred to that section.

S5(f)
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BPSK Receiver
If no multipath impairments are induced by the channel, the received

BPSK signal can be expressed as

T

’E,

Seo (1) = M (1) J—cus (2nfit+6,+0,,)

Ty

IS Al

2Ly
= m(t)JT—Cﬂﬁ (2?[)‘:,_‘134' H]
h

(6.72)

where 6, is the phase shifl corresponding to the time delay in the channel.
BPSK uses coherent or synchronous demodulation, which requires that informa-
tion about the phase and frequency of the carrier be available at the receiver. If a
low level pilot carrier signal is transmitted along with the BPSK signal, then the
carrier phase and frequency may be recovered at the receiver using a phase



Rappaport

AT . TROTEF
Spectirum and Bandwidth of BPSK

The BPSK signal using a polar baseband data waveform m(?) can be
expressed in complex envelope form as

Sapsk = Ke {gpsy (¢) exp (J2nf 1) } (5.68)
where ggppo (£) 1s the complex envelﬂpe of the signal given by

(5.69)

The power spectral density (PSD) of the complex envelope can be shown to
be

_ sinmfT,\2
Eunx(ﬂ ZE( AT, ) (5.70)

The PSD for the BPSK signal at RF can be evaluated by translating the
baseband spectrum to the carrier frequency using the relation given in equation
(5.41).

Hence the PSD of a BPSK signal at RF is given by
_Eyrrsinn(f-f)T,\?* (sinn (=F—f)Ty\?
Popey = 5 [( 1) T, ) +( AT T, ) } (6.71)




Rappaport
The PSD of the BPSK signal for both rectangular and raised cosine rolloff pulse
shapes is plotted in Figure 5.22_ The null-to-null bandwidth is found to be equal
to twice the bit rate (BW =2R, = 2/T,). From the plot, it can also be shown
that 90% of the BPSK signal energy is contained within a bandwidth approxi-
mately equal to 1.6R, for rectangular pulses, and all of the energy is within
.5, for pulses with a = 0.5 raised cosine filtering.
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Power Spectral Density (PSD) of a BPSK signal.



