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2 M-any PSK

QPSK is a special case of M-ary PSK, where the phase of the carrier takes on one of M
possible values, namely, §; = 2{(i — 1}7/M, where i = 1, 2, ..., M. Accordingly, during
cach signaling interval of duration T, one of the M possible signals

s;(8) = E cos(Zq:rft + %&' {i— 1)) r—1,2,..., M (6.46)

is sent, where E is the signal energy per symbol. The carrier frequency f. = n,/T for some
fixed integer ..

Each s;{(t) may be expanded in terms of the same two basis functions ¢ (£) and ¢,(#)
defined in Equations {6.25) and (6.26), respectively. The signal constellation of M-ary PSK
is therefore two-dimensionall The M message points are eq_a]ly spaced on a circle of radius

(VE and center at the origin, Jas fllustrated in in Figure 6.154, for the case of octapbase-
shift-keying (ie., M = 8).




()

FIGURE 6.13 (a) Signal-space diagram for octaphase-shift keying (i.e., M = 8). The decision
boundaries are shown as dashed lines. () Signal-space diagram illustrating the application of the

m

diy = diy = 2VE sin(M

Hence, the use of Equation (5.92) of Chapter 3 yields the average probability of symbol
error for coherent M-ary PSK as |

E
P, = erfc E sin ﬁ {6.47)

where it is assumed that M = 4, The approximation becomes extremely tight, for fixed
M, as E/Nj 1s increased. For M = 4, Equation (6.47) reduces to the same form given in
Equation (6.34) for QPSK.
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Power Spectra of M-ary PSK Signals
The symbol duration of M-ary PSK is defined by

T = T, logs M (6.48)

where T}, is the bit duration. Proc:eeding in a manner similar to that described for a QPSK
signal, we may show that the baseband power spectral density of an M-ary PSK signal is
given by

Sp(f) = 2E sinc?(TF)

6.49
= 2E, log, M sinc(T,f log, M) 4

In Figure 6.16, we show the normalized power spectral density 55(f)/2E, plotted versus
the normalized frequency fT,, for three diffcrent values of M, namely, M = 2, 4, 8.
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FiGURE 6.16 Power spectra of M-ary PSK signals for M = 2, 4, 8.



For the passband basis functions defined in Equations (6.25) and {6.26), the chaune]

bandwidth required to pass M-ary PSK signals

(more precisely, the main spectral lobe of

M-ary signals) is given by

B =

Z
T

(6.50)

where T is the symbol duration, But the symbol duration T is related to the bit duratien
T, by Equation {6.48). Moreover, the bit rate R, = 1/T,. Hence, we may redefine the
channel bandwidth of Equation (6.50) in terms of the bit rate R, as

2R,
B = .
log, M (6.31)
Based on this formula, the bandwidth efficiency of M-ary PSK signals is given by
p ==gié
B
(6.52)
_ loga M
2

M-ary PSK signals

# TABLE 6.4 Bandwidih efficiency of

M 2 4 8

16 32 64

p(bit/s/Hz) 0.5 1 15 2 25 3




6.4 Hybrid Amplitude/Phase
Modulation Schemes |

M-QAM



Two dimensional mod.,... (M-QAM)

= M-ary Quadrature Amplitude Mod. (M-QAM)

5. (1) =] fo COS(&)CI-F gpj.)

2(M -1)

where a;, and a,, are PAM symbols and E, =

) 3 )
(—M +1dM =1) (VM +3 M -1) - WM =1,.dM -1)
(VM +1,dM =3) (=M +3.IM =3) - (M —1,JM -3)

((1“ s lig ) =

|(—VM +1~M +1) (M +3-IM +1) - (M —1—M +1)|
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Coherent detection of M-QAM
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# M-ARY QUADRATURE AMPLITUDE MODULATION

In Chapters 4 and 3, we studied M-ary pulse amplitude modulation (PAM), which is one-
dimensional. M-ary QAM is a two-dimensional generalization of M-ary PAM in that its
formulation involves two orthogonal passband basis functions, as shown by

4 > )
bq(2) = \/j'f' cos{2f.t), 0=t=T (6.53)
_ ¢, (t) = \/g sin{2mf.1), 0=tr=T ) (6.54)

Let the ith message point s; in the (¢, ¢,) plane be denoted by (a;d,in/2, b;dmin/2), Where
Amin 15 the minimum distance between any two message points in the constellation, g; and
b, are integers, and i/ = 1, 2, ..., M. Let (d,/2) = \/E,, where Ej is the energy of the
signal with the lowest amplitude. The transmitted M-ary QAM signal for symbol &, say,
is then defined by

RE 2F _ 0=t=T
s.(8) = ?ﬂak cos(27f.t) — -—]—,—‘3 b, sin(27f.t), b 0. +1 42 (6.55)

The signal s, (¢t} consists of two phase-quadrature carriers with each one being modulated
by a set of discrete amplitudes, hence the name guadrature amplitude modulation.




- QAM Square Constellations
With an even number of bits per symbol, we may write
L=vVM | (6.56)

where I is a positive integer. Under this condition, an M-ary QAM square constellation
can always be viewed as the Cartesian product of a one-dimensional L-ary PAM constel-

lation with itself. By definition, the Cartesian product of two sets of coordinates (repre
senting a pair of one-dimensional constellations) is made up of the set of all pggsib:[-
ordered pairs of coordinates with the first coordinate in each such pair taken from the ﬁi‘s?:
set involved in the product and the second coordinate taken from the second set i the

product.
In the case of a QAM square constellation, the ordered pairs of coordinares naturally

form a square matrix, as shown by

(—L + 1, L — 1) (-L+3,L—-1) .. (L—-1,L-17
@ b = hL+FL~3) hL+%L—3} . {L—%L-a
(-L+1,-L+1) (=L+3,-L+1) .. (L-1,-L+1

(6.57)




Examples



Q1. In the shown transmitter the amplifiers A& B are controlled by a control bit "=". If "=" is 'I' the
amplification ratio (for A and B) 1s 2:1 and 1f "z" 1s '-1' the ratio (for A and B)s 1:1. The mput stream
1 divided nto symbols each of 3 bits designated as xyz i order. The bits are represented using polar
NRZ format with =5v and —~A=-5v.
|. Find all possible outputs of the transmutter i terms of ¢1 and ¢2.

2. Sketch to scale the signals m Signal space. and define the Decision Regions (DR) and the
Decision Boundaries(DB).
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(2. A comnmumication system uses a signal s,(f) = 3cos(200ar) 0<1 < 2see to represent the digit '
To present the digat 0" exther s,(f) or s,(f) 15 available, where
§,(f) = 4cos(2007) 5, (1) = 4eos(400nt) (<t < 2see.

o | | N
The noise 15 assumed to be AWGN with two-sided PSD= ?” =Dwatt/Hz.

|, Sketch to scale the two cases m S.S. showimg the DRs and the DBs.

). Caloulate the munmum average probability of error,

3. Show that the recerver m both cases can be mplemented usmg a single arm recerver and defime
each part of the recetver
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(3. The below digital modulator scheme produces 4 equally likely messages.

l

)
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4

Sketch the output possible signals m SS.

Draw the DRs and DBs.

Calculate the average energy.

Calculate the muimum average probability of error 1f the noise 1s assumed to be AWGN of

N
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& EXAMPLE 6.3

Consider a 16-QAM whose signal constellation is depicted in Figure 6,174, The encoding of
the message points shown in this figure is as follows:

 Two of the four bits, naﬁlﬂly, the left-most two bits, specify the quadrant in the (@4, d,)-
plane in which a message point lies, Thus, starting from the first quadrant and pro-
ceeding counterclockwise, the four quadrants are represented by the dibits 11, 10, 0,
and 01,

> The remaning two hits are used to represent one of the four possihle symbols lying
within each quadrant of the {¢,, ¢,)-plane.

Note that the encoding of the four quadrants and 4lso the encoding of the symbols in each
quadrant follow the Gray coding rule,
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FIGURE 6.17 (a) Signal-space diagram of M-ary QAM for M = 16; the message points in each
quadrant are identified with Gray-encoded quadbits. (b) Signal-space diagram of the correspond-

ing 4-PAM signal. .

¢

~3di2

—df2

|
I
|
!

I
0 |
!
|

(b)

dalZ

»
3d2

#y



For the example at hand, we have L = 4. Thus the square constellation of Figure 6.172
15 the Cartesian product of the 4-PAM constellation shown in Figure 6.17b with itself. More-
over, the matrix of Equation (6.57) has the value

I_ (“33 3} {"’15 3) u: 3} {35 3)
(—3, 1) (—1, 1) (1, 1) (3, 1)

{.ﬂ,— ] E’:} =

<

To calculate the probability of symbol error for M-ary QAM, we exploit the property
that a QAM square constellation can be factored into the product of the corresponding
PAM constellation with itself. We may thus proceed as follows:

1. The probability of correct detection for M-ary QAM may be written as

P.=(1— P2 {6.58)

where P} is the probability of symbol error for the corresponding L-ary PAM with
L= \VM.
2. The probability of symbol error P, is defined by

’ P PR Eo
P = (1 \/H) erfc( N{,) (6.59)

{Note that L = VM in the M-ary QAM corresponds to M in the M-ary PAM con-
sidered in Problem 4.27.)




3. The probability of symbbl error for M-ary QAM is given by

P,=1-P
=1~ (1 — Py (6.60)
= 2P’ -

where it is assumed that P, is small enough compared to unity to justify ignoring the
quadratic term.

Hence, using Equations {6.58) and {6.59) in Equation (6.60), we find that the probability
of symbol error for M-ary QAM is approximately given by

P, =~ 2(1 —~ -—-\/lﬁ) erfc(‘/i:?') (6.61)

The transmitted energy in M-ary QAM is variable in that its instantaneous value
depends on the particular symbol transmitted. It is therefore more logical to express P, in
terms of the average value of the transmitted energy rather than E,. Assuming that the L
amplitude levels of the in-phasc or quadrature component are equally likely, we have

~ L2
o = 2[% 2, (20— 1)2] (6.62)




where the multiplying factor of 2 outside the square brackets accounts for the equa] Cop
trtbutions made by the in-phase and quadrature components. The limits of the SummaﬂU;
and the multiplying factor of 2 inside the square brackets take account of the SYImety,,
nature of the pertinent amplitude levels around zero. Summing the series in Equaﬁun

(6.62), we get

E..

2(1% - 1)E,
B 3
2(M - 1)E,
3

Accordingly, we may rewrite Equation {6.61) in terms of E,, as

1 3F,,
P, = 2(1 — m) erfc(\/z{M =N,

)

which is the desired result.

{6.63)

(6.64)

The case of M = 4 is of special interest. The signal constellation for this value of 3
is the same as that for QPSK. Indeed, putting M = 4 in Equation {6.64) and noting th
for this special case E,, equals E, where E is the energy per symbol, we find that the
resulting formula for the probability of symbol error becomes identical to that in Equation

(6.34), and so it should.



