Week 5-P2
5. Signal-Space Analysis

5.2 Geometric Representation of Signals



Chapter 5 Signal - Space Analysis

5.1 Introdution
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Figure 5.1 Block diagram of a generic digital communication
system.

The message source emits one symbol i
mi € {ml,mz,....,mM }
The probability the symbol 7 is emitted is

P;':P(mi):ﬁforizl,l...,M (5.1)

The transmitter codes m into si(7)

The energy of si(¢) is
Ei=[ s>(t)dt,i=12,...M (5.2)



Assuming that the channel is linear and the channel
noise , w(z) ,is AWGN
x(t)=si(t))+w(@) ,forO<r<Tandi=12,...M (5.3)

Transmitted Received
signal signal
s; (1) + x(7)

> S

—+

White Gaussian noise
w (7)

Frgure 5.2 Additive white Gaussian noise (AWGN) model of a channel.
At the receiver the average prob. of symbol error
M
Pe = 3, p,P(m # mi|m:) (5.4)
i=1

mi : the transmitted symbol

m : the estimate



Geometric Representation of Modulation Signals

The essence of geometric representation of signals® is to represent any set of M energy
signals {s;{¢)} as linear combinations of N orthonormal basis functions, where N = M.
That is to say, given a set of real-valued energy signals s1(2), 52(8), ..., snlt), each of
duration T seconds, we write ‘

~ _
s;(¢) = rg,l/-isfff?jfﬂ: {:}j;; i T M (5.5)
where the coefficients of the expghsion are defined by
{£=1,2,...,M 5.6
;1 =1,2,..., N

The real-valued basis functions| ¢ (£}, @1(t), ..., dn(f) are orthonormall by which we
imean

T . Jrifi=j
-J; P:(t) () dt = &; = {D if 7% (3.7}

where §; is the Kronecker delta. The first condition of Equation (5.7) states that each basis
function is mormalized to have unit energy. The second condition states that the basis
functions ¢4(), ¢u(1), . .., dnl2) are orthogona! with respect to each other over the in-
terval 0 =t = T, |



Accordingly, we may state that each signal in the sis cumpletely determined

by the vector of its coefficients

R
I
g

i=1,2,..., M (5.8)

| SN

The vectors; is called a sigral vector JFurthermore, if we conceptually i
tional notion of two- and three-dimensional Euclidean spaces to an|N-dimensional Ej—
clidean space Jwe may visualize the set of signal vectors {s;|i = 1, 2,..., M} as defining
a corresponding set of M points in an N-dimensional Euclidean space, with N mutually

perpendicular axes labeled ¢4, ¢4, . . ., . This N-dimensional Euclidean space is called
sl e '
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FIGURE 5.3 (a) Synthesizer for generating the signal s,(t). (b) Analyzer for generating the set of
signal vectors {s;}.

the_engrgy of a signal s;(t) is equal to the squared‘length of the signal‘vectcr:r 5;(2)

N
E,~=2$?f

i—1
ls: Il =



Figure 5.4

lllustrating the geometric | | |
representation of signals for the case
when V=2 and M= 3.

The idea of visualizing a set of energy signals geometrically, as just described, is of
profound importance. It provides the mathematical basis for the geometric representation
of energy signals, thereby paving the way for the noise analysis of digital communication
systems in a conceptually satisfying manner. This form of representation is illustrated in
Figure 5.4 for the case of a two-dimensional signal space with three signals, thatis, N =2
and M = 3,

In an N-dimensional Euclidean space, we may define lengths of vectors and angles

norm) of a signal vector s;|by the symbol| | s, || The squared-length of any signal vector s,
is defined to be the inner product or dot product of s; with itself, as shown by

between vectors. It 1s customary to denﬁe length (also called the|absolute value or
|

I's:I* = s/s,

M
=>sk i=12...,M

=1

(5.9)

where s is the jth element of s;, and the superscript T denotes matrix transposition.



There is an interesting relationship between the enetrgy content of a signal and its
representation as a vector. By definition, the energy of a signal s,{t) of duration T seconds
is

E; = J‘ s7(t) di (5.10)

0

Therefore, substituting Equation (5.5) into (3.10), we get

TI N Y
Ei = J‘n [Z 5r‘f¢’:‘<”][2 Smfﬁk(ﬂ]tﬂ

i=1 k=1




Interchanging the order of summation and integration, and then rearranging terms, we get

N N T . .
Ei= 2 2 sysu L &(t) by ()t (5.11)

But since the ¢;(¢) form an orthonormal set, in accordance with the two conditions of
Equation (5.7}, we find that Equation {5.11) reduces simply to

N
E; = E Ly
= (5.12)

= | 8"

Thus Equations (5.9) and (5.12) show that the energy of a signal s;(t) is equal to the
squared length of the signal vector s;(t) representing it.

In the case of a pair of signals s;(z) and s, (z), represented by the signal vectors s; and
s, respectively, we may also show that

L 5:{t)s, (1) dt = S?-Ek (5.13)

Equation (5.13} states that the inner product of the signals s,{t) and s (z) over the interval
[0, T], using their time-domain representations, is equal to the inner product of their
respective vector representations s, and s;. Note that the inner product of s;(t) and s, (¢) is
invariant to the choice of basis functions (¢;(¢)};L; in that it only depends on the compo-
nents of the signals s;(#) and s, (¢} projected onto each of the basis functions.



Yet another useful relation involving the vector representations of the signals st
and s, (#) is described by

M

“ 5; — S H * = E (s;; — 5.&,;}'2

j=1

= L (si(#) = sile))dt

(5.14)

where ||'s; — s, || is the Euclidean distance, d., between the points represented by the
signal vectors s; and sg.

To complete the geometric representation of energy signals, we need to have a rep.
resentation for the angle 6, subtended between two signal vectors s; and s,.. By definition,
the cosine of the angle 8, is equal to the inner product of these two vectors divided by th
product of their individual norms, as shown by

cos 8, = 54 {5
%= TT el 1)

The two vectors s, and s, are thus orthogonal ar perpendicular to each other if their inner
product s/'s. s zero, in which case 8, = 90 degrees; this condition is intuitively satisfying,



N

“ 5, ™ Sg || ? = Zl (s — skj)z
e (5.14
= | sty - o

where ||| s; — s, | is the Euclidean distance, dy.,|between the points represented by the
signal vectors s; and 5.
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FIGURE 5.5 Vector representations of signals s,(t} and s,(t), providing the background picture
for proving the Schwarz inequality.



B GRAM-SCHMIDT ORTHOGONALIZATION PROCEDURE

Having demonstrated the elegance of the geometric representation of energy signals, how
do we justify it in mathematical terms? The answer lies in the Gram-Schmidt orthogon-
alization procedure, for which we need a complete orthonormal set of basis functions. To
proceed with the formulation of this procedure, suppose we have a set of M energy signals
denoted by s,(t), sa(2), . .., sm(2t). Starting with s,(¢) chosen from this set arbitrarily, the
first basis function is defined by

Pt} = f‘% | (5.19)

where E, is the energy of the signal s,(t). Then, clearly, we have
$1(t) = VE4(2)
= §y1¢(t)

where the coefficient s;; = VE; and ¢ 4{t) has unit energy, as required.
Next, using the signal s,(¢), we define the coefficient s,, as

(5.20)

T
a1 = J; s:(t)a(t)dt | (3.21)

We may thus introduce a new intermediate function
galt) = sa(t) — su4(t) (5.22)




which is orthogonal to ¢ (#) over the interval 0 = ¢ = T by virtue of Equation {5.21) an4

the fact that the basis function ¢4(z) has unit energy- Now, we are ready to define th,
second basis function as

ga2(t)

dalt) = = (5.23)
1 ffu ga(e)dt

Substituting Equation (5.22) into (5.23) and simplifying, we get the desired result

52(8) — 8316 4(2) (5
VE: — 53, 24)

where E; is the energy of the signal s,(z). It is clear from Equation (5.23) that

(1) =

T
[ #30dr =1

and from Equation (5.24) that

.
L G1(t)P(t)de = O

That is to say, ¢ (1) and ¢ (2) form an orthonormal pair, as required.
Continuing in this fashion, we may in general define

i—1

giz) = s;(t) — 2 syi(e) (525

=1

where the coefficients s;; are themselves defined by

T
S = J‘-:r s:(8)y(2)dt, i=1,2,...,i — 1 (5.26)




Equation (5.22) 1s a special case of Equation (5.25) with i = 2. Note also that for { = 1,

the function g;(t) reduces to s;(#).
Given the g;(f), we may now define the set of basis functions

&:if) i=1.2,...,N (527

oilt) = e,
‘ﬂu gi(t)dt

which form an orthonormal set. The dimension N is less than or equal to the number of
given signals, M, depending on one of two possibilities:

form a linearly independent set, in which cas®

o The signals s,(t), sz(t), .« - sult)
N = M.

» The signals s,(t), s2(t), « . . y Su(t} are 7ot linearly independent, in which case N<M,
nd the intermediate function g;(¢) is zero for i > N.



Note that the conventional Fourier series expansion of a periodic signal is an example
of a particular expansion of the type described herein. Also, the representation of a band-
limited signal in terms of its samples taken at the Nyquist rate may be viewed as another
sample of a particular expansion of this type. However, two important distinctions should

be made:

1. The form of the basis functions ¢,(t), ¢(t), . . ., x(t) has not been specified. That
is to say, unlike the Fourier series expansion of a periodic signal or the sampled
representation of a band-limited signal, we have not restricted the Gram-Schmid
orthogonalization procedure to be in terms of sinusoidal functions or sinc functions
of time,

2, The expansion of the signal s;(¢) in terms of a finite number of terms is not an
approximation wherein only the first N terms are significant but rather an exact
expression where N and only N terms are significant.



