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R1 Mathematical Formulas and Identities

R1.1 Finite and Infinite Sums of Numbers1

n∑
k=1

k =
n(n + 1)

2
, (R1.1)

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
, (R1.2)

n∑
k=1

k3 =
n2(n + 1)2

4
, (R1.3)

∞∑
k=1

1

k2
=

π2

6
, (R1.4)

∞∑
k=1

1

k4
=

π4

90
, (R1.5)

where n is a positive integer.

Note: The series
∞∑

k=1

1

k
(R1.6)

does not converge.

n−1∑
k=0

dk =
1− dn

1− d
, (R1.7)

with d arbitrary integer and |d| 6= {1, 0}.
∞∑

k=0

dk =
1

1− d
, (R1.8)

with 0 < |d| < 1.

1For test of the convergence of infinite sums, a recommended reading is Table of Inte-
grals, Series, and Products, I.S. Gradshteyn and I.M. Ryzhik, c©2000, Academic Press.
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R1.2 Power Series

Binomial Series:

(x+y)n = xn +
(

n
1

)
xn−1y +

(
n
2

)
xn−2y2 +

(
n
3

)
xn−3y3 + · · ·+

(
n

n−1

)
xyn−1 +yn,

(R1.9)
with n a positive integer.

Taylor Series:

If f(x) is an arbitrarily differentiable function, then it can be expressed in
the form

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · ,

(R1.10)

where f ′(a) = df(x)
dx

∣∣
x=a

, f ′′(a) = d2f(x)
dx2

∣∣
x=a

, and f (n)(a) = dnf(x)
dxn

∣∣
x=a

.

Exponential Series:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · , (R1.11)

ax = 1 + x loge a +
(x loge a)2

2!
+

(x loge a)3

3!
+ · · · . (R1.12)

Logarithmic Series:

loge(1+x) = x− 1
2
x2+ 1

3
x3− 1

4
x4+· · · , (Region of Convergence :−1 < x < 1).

(R1.13)
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Trigonometric Series:

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ · · · , (R1.14)

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · , (R1.15)

tan x = x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · · , (Region of Convergence : x2 < π2

4
),

(R1.16)

cot x =
1

x
− x

3
− x3

45
− 2x5

945
+ · · · , (Region of Convergence : 0 < |x| < π).

(R1.17)

R1.3 Factorial

n! = n(n− 1)(n− 2) · · · 2 · 1, with n a nonnegative integer, (R1.18)

0! = Γ(0 + 1) = 1. (R1.19)

R1.4 Permutations and Combinations

The number of permutations S of n things taken k at a time, with n and k
positive integers, is given by

S =
n!

(n− k)!
. (R1.20)

The number of combinations S of n things taken k at a time, with n and
k positive integers, is given by

S =
(n

k

)
=

n!

k!(n− k)!
. (R1.21)

R1.5 Polynomial Factors and Products

xn − yn = (x− y)(xn−1 + xn−2y + · · ·+ yn−1), (R1.22)

with n a positive integer.
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xn + yn = (x + y)(xn−1 − xn−2y + xn−3y2 − · · ·+ yn−1), (R1.23)

with n a positive and odd integer.

N∏
i=1

(x + ξi) = (x + ξ1)(x + ξ2) · · · (x + ξN)

= α0 + α1x + α2x
2 + · · ·+ αN−1x

N−1 + αNxN

(R1.24)

where

α0 =
N∏

i=1

ξi, α1 =
N∑

i=1

α0

ξi

, α2 =
N∑

i6=j
i,j=1

α0

ξiξj

, · · · ,

αN−1 = ξ1 + ξ2 + ξ3 + · · ·+ ξN , αN = 1.

R1.6 Roots of Quadratic Equation

The roots x1, x2 of the quadratic equation

ax2 + bx + c = 0,

with a, b, and c real numbers, are given by

x1 =
−b +

√
b2 − 4ac

2a
, (R1.25)

x2 =
−b−

√
b2 − 4ac

2a
. (R1.26)

Note:

x1 + x2 =
−b

a
, (R1.27)

x1x2 =
c

a
. (R1.28)

R1.7 Euler’s Formula

ejθ = cos θ + j sin θ, (R1.29)

with θ a real number.
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R1.8 Trigonometric Functions and Formulas

sin θ = 1
2j

(ejθ − e−jθ), (R1.30)

cos θ = 1
2
(ejθ + e−jθ), (R1.31)

tan θ =
sin θ

cos θ
=

(ejθ − e−jθ)

j(ejθ + e−jθ)
, (R1.32)

cot θ =
1

tan θ
=

j(ejθ + e−jθ)

(ejα − e−jθ)
, (R1.33)

csc θ =
1

sin θ
=

2j

ejθ − e−jθ
, (R1.34)

sec θ =
1

cos θ
=

2

ejθ + e−jθ
, (R1.35)

sin θ = cos(π
2
− θ) = sin(π − θ), (R1.36)

cos θ = sin(π
2
− θ) = − cos(π − θ), (R1.37)

tan θ = cot(π
2
− θ) = − tan(π − θ), (R1.38)

sinh θ = 1
2
(eθ − e−θ), (R1.39)

cosh θ = 1
2
(eθ + e−θ), (R1.40)

tanh θ =
sinh θ

cosh θ
=

(eθ − e−θ)

(eθ + e−θ)
, (R1.41)

with θ a real number.
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sin(θ1 ± θ2) = sin θ1 cos θ2 ± cos θ1 sin θ2, (R1.42)

cos(θ1 ± θ2) = cos θ1 cos θ2 ∓ sin θ1 sin θ2, (R1.43)

sin2 θ1 − sin2 θ2 = sin(θ1 + θ2) · sin(θ1 − θ2), (R1.44)

cos2 θ1 − cos2 θ2 = − sin(θ1 + θ2) · sin(θ1 − θ2), (R1.45)

cos2 θ1 − sin2 θ2 = cos(θ1 + θ2) · cos(θ1 − θ2), (R1.46)

cos2 θ1 + sin2 θ2 = 1 (R1.47)

sin θ1 ± sin θ2 = 2 sin
(θ1 ± θ2

2

)
· cos(θ1 ∓ θ2), (R1.48)

cos θ1 + cos θ2 = 2 cos
(θ1 + θ2

2

)
· cos

(θ1 − θ2

2

)
, (R1.49)

cos θ1 − cos θ2 = −2 sin
(θ1 + θ2

2

)
· sin

(θ1 − θ2

2

)
, (R1.50)

sin 2θ = 2 sin θ cos θ, (R1.51)

cos 2θ = cos2 θ − sin2 θ, (R1.52)

sin 3θ = 3 sin θ − 4 sin3 θ, (R1.53)

cos 3θ = 4 cos3 θ − 3 cos θ. (R1.54)

with θ, θ1, and θ2 real numbers.

R1.9 Newton-Raphson Method: Finding a root of a
polynomial equation

The Newton-Raphson method is a numerical technique to determine approx-
imately the root of the equation f(x) = 0. The procedure starts from a
initial guess of the root x = x1. Then using the recurrence relation

xn+1 = xn −
f(xn)

f ′(xn)
, n = 1, 2, · · · ,

where

f ′(xn) =
df(x)

dx

∣∣∣
x=xn

,

the successive approximations xn+1, n ≥ 1, beginning with n = 1, can be
found. The approximation is assumed to converge when the difference be-
tween xn+1 and xn is below a prescribed small number, typically 10−6.
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The Newton-Raphson method converges fast to the actual root if the
initial guess of the root is close to the actual root. However, there are three
main drawbacks: (1) The method fails when f ′(xn) = 0, (2) The method does
not always converge, and (3) The method may converge to a root different
from that expected if the initial guess x1 is far from the actual root.

Example R1.1. In this example, we would like to show how the Newton-
Raphson method is used to find the root of f(x) = x3 − 3x2 + x − 1 = 0.
Assume the numerical resolution required is 14 decimal digits.

We start with an initial guess of the root x1 = 2.5:

x1 = 2.5,

x2 = x1 −
f(x1)

f ′(x1)
= 2.84210526315789,

x3 = x2 −
f(x2)

f ′(x2)
= 2.77282691999216,

x4 = x3 −
f(x3)

f ′(x3)
= 2.76930129255045,

x5 = x4 −
f(x4)

f ′(x4)
= 2.76929235429601,

x6 = x5 −
f(x5)

f ′(x5)
= 2.76929235423863,

x7 = x6 −
f(x6)

f ′(x6)
= 2.76929235423863.

The recurrence process stops as |x7 − x6| ≤ 10−15. Hence x = x7 is a root of
f(x).

R1.10 Hölder’s Inequality and Cauchy-Schwartz’s
Inequality

The Hölder’s inequality for integrals is given by∣∣∣∫ a1

a0

f(x)g(x) dx
∣∣∣ ≤ (∫ a1

a0

|f(x)|p dx
)1/p (∫ a1

a0

|g(x)|q dx
)1/q

, (R1.55)

where
1

p
+

1

q
= 1.
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The equality holds when

f(x) = kg(x)p−1, with k any constant.

If p = q = 2, the inequality becomes Schwartz’s inequality∣∣∣∫ a1

a0

f(x)g(x) dx
∣∣∣ ≤ (∫ a1

a0

|f(x)|2 dx
)1/2 (∫ a1

a0

|g(x)|2 dx
)1/2

. (R1.56)

The equality holds when

f(x) = kg(x), with k any constant.

The Hölder’s inequality for sums is given by

∣∣∣ N∑
i=1

xiyi

∣∣∣ ≤ ( N∑
i=1

|xi|p
)1/p ( N∑

i=1

|yi|q
)1/q

, (R1.57)

where
1

p
+

1

q
= 1.

The equality holds when

yi = kxp−1
i , with k any constant.

If p = q = 2, the inequality becomes Cauchy’s inequality

∣∣∣ N∑
i=1

xiyi

∣∣∣ ≤ ( N∑
i=1

|xi|2
)1/2 ( N∑

i=1

|yi|2
)1/2

, (R1.58)

The equality holds when

yi = kxi, with k any constant.
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R2 Useful Functions

1. rect function

rect(x) =

{
1, |x| < 1

2

0, |x| > 1
2

.

2. sinc function

sinc(x) =
sin πx

πx
.

3. signum function

sgn(x) =


+1, x > 0
0, x = 0
−1, x < 0

.

4. ceiling function rounds the input x towards the closest integer larger
than or equal to x and is denoted as dxe.
For example, d3.2e = d3.8e = 4 and d−3.2e = d−3.9e = −3.

5. floor function rounds the input x towards the closest integer less than
or equal to x and is denoted as bxc.
For example, b3.2c = b3.8c = 3 and b−3.2c = b−3.9c = −4.

6. median of a set of real numbers {x1, x2, ..., xN} is obtained by rank
ordering the numbers in the set and choosing the middle number in the
ordered set.

For example, the median of {7, 13, 1, 6, 3} is 6 and the median of {7, 13, 1, 6, 3, 9}
is (6 + 7)/2 = 6.5.

7. Dirac delta function δ(τ) is a function of τ with infinite height, zero
width, and unit area. It is the limiting form of a unit area pulse function

p4(τ) =

{
1

24 , −4 < τ ≤ 4
0, elsewhere

as 4 goes to 0, i.e.,

lim
4→0

∫ ∞

−∞
p4(τ) dω =

∫ ∞

−∞
δ(τ) dτ = 1. (R2.1)
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Equation(R2.1) also holds even when we reverse the direction of axis τ
and shift δ(−τ) by an amount t, i.e.,∫ ∞

−∞
δ(t− τ) dτ = 1. (R2.2)

Because of the above properties, we have∫ ∞

−∞
x(τ)δ(t− τ) dτ = x(τ)|τ=t = x(t). (R2.3)

Equation(R2.3) holds for any value of t, and it is referred as the sifting
property of the Dirac delta function.

8. The modulo operation of integer X over integer N is the residue of X
divided by N :

〈X〉N = X − kN, k = bX/Nc.
It can be verified that the modulo operation is linear. When nega-
tive numbers are used, 〈X〉N has the same sign as N . For example,
〈67〉13 = 67 − 5 · 13 = 2, 〈67〉−13 = 67 − (−13) · (−6) = −11 and
〈−67〉13 = −67− 13 · (−6) = 11.

The statement “X is congruent to Y , modulo N” means that

〈X〉N = 〈Y 〉N .

The notation
〈X−1〉N

denotes the multiplicative inverse of X evaluated modulo N , i.e., if
〈X−1〉N = α, then 〈Xα〉N = 1. For example, 〈3−1〉4 = 3 because
〈3 · 3〉4 = 1, and 〈8−1〉5 = 2 because 〈8 · 2〉5 = 1.

In the case of polynomial, the operation a(z) mod b(z) is the residue
r(z) after the polynomial division a(z)/b(z). For example, if a(z) =
4z−3 +2z−2 +5z−1 +1 and b(z) = z−2 +3z−1 +4 then the residue after
the division

a(z)

b(z)
= 4z−1 − 10 +

19z−1 + 41

z−2 + 3z−1 + 4

is 19z−1 + 41. Therefore, a(z) mod b(z) = r(z) = 19z−1 + 41.
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R3 Commonly Used Differentials and

Integrals

R3.1 Differentials

d(uv) = u dv + v du (R3.1)

d(
u

v
) =

v du− u dv

v2
(R3.2)

d(un) = n un−1 du (R3.3)

d eu = eu du (R3.4)

d au = (au loge a) du (R3.5)

d(loge u) = u−1 du (R3.6)

d sin u = cos u du (R3.7)

d cos u = − sin u du. (R3.8)

R3.2 Integrals

∫
f(g(x))g′(x) dx =

∫
f(y) dy, y = g(x) and g′(x) = dy/dx (R3.9)∫

u dv = uv −
∫

v du (R3.10)∫
f ′(x) dx

f(x)
= loge f(x) (R3.11)∫

dx

x
= loge x (R3.12)
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∫
xn dx =

xn+1

n + 1
(R3.13)∫

ex dx = ex (R3.14)∫
ax dx =

ax

loge a
(R3.15)∫

abx dx =
abx

b loge a
(R3.16)∫

loge x dx = x loge x− x (R3.17)∫
sin x dx = − cos x (R3.18)∫
cos x dx = sin x (R3.19)∫
tan x dx = − log cos x. (R3.20)

R3.3 l’Hôpital’s Rule

Consider a fraction f(x)/g(x) for which at x = x0, f(x0) = g(x0) = 0 (or
f(x0) = g(x0) = ∞). Then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
(R3.21)

as long as the limits on the right-hand side exist and are finite.

R3.4 Examples

Example R3.1. Evaluate the integral

x[n] =
1

2π

∫ π

−π

X(ω)ejωn dω,

where

X(ω) =

{
cos(αω), |ω| ≤ ω0

0, ω0 < |ω| ≤ π.

12



Answer:

x[n] =
1

2π

∫ ω0

−ω0

cos(αω)ejωn dω

=
1

2π

∫ ω0

−ω0

1

2
(ejαω + e−jαω)ejωn dω

=
1

4π

(∫ ω0

−ω0

ejαωejωn dω +

∫ ω0

−ω0

e−jαωejωn dω
)

=
1

4π

( 1

j(α + n)
ej(α+n)ω

∣∣∣ω0

−ω0

+
1

j(−α + n)
ej(−α+n)ω

∣∣∣ω0

−ω0

)

=
1

4π

( 1

j(α + n)
2j sin(α + n)ω0 +

1

j(−α + n)
2j sin(−α + n)ω0

)
=

sin(α + n)ω0

2π(α + n)
+

sin(−α + n)ω0

2π(−α + n)
.

Example R3.2. Evaluate the integral

x[n] =
1

2π

∫ π

−π

X(ω)ejωn dω,

where

X(ω) =

{
ω, |ω| ≤ ω0

0, ω0 < |ω| ≤ π.

using integration by parts.
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Answer:

x[n] =
1

2π

∫ ω0

−ω0

ωejωn dω

=
1

2π
· 1

jn

∫ ω0

−ω0

ωejωn d(jn)ω

=
1

2π
· 1

jn

∫ ω0

−ω0

ω dejωn

=
1

2π
· 1

jn

[
ωejωn

∣∣∣ω0

−ω0

−
∫ ω0

−ω0

ejωn dω
]

=
1

2π
· 1

jn

[
ω0e

jω0n − (−ω0)e
−jω0n − 1

jn
ejωn

∣∣∣ω0

−ω0

]
=

1

2π
· 1

jn

[
ω0(e

jω0n + e−jω0n)− 1

jn
(ejω0n − e−jω0n)

]
=

1

π(jn)

[
ω0 cos(ω0n)− 1

n
sin(ω0n)

]
.
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R4 Complex Numbers

R4.1 Definition

A complex number z is represented in the Cartesian coordinate as

z = x + jy

where j =
√
−1, and x and y are real numbers and denoted as the real

and imaginary parts of z, respectively. The complex numbers can also be
represented in polar form as

z = |z|ejθ,

where |z| and θ are the magnitude and angle of z, respectively:

|z| =
√

x2 + y2, θ = tan−1(
y

x
).

The principal value of the angle of z is given by

−π < θ ≤ π.

Figure R4.1 shows the representation of a complex number z in the com-
plex plane. By using Euler′s Formula (see Eq.(R1.29)) we can find the
representation of a complex number in Cartesian form from its polar form:

x = |z| cos θ, y = |z| sin θ.

It should be pointed out here that negative real numbers have angle

θ = (2k + 1)π

with k any integer.

Example R4.1. Let z = 2 + j
√

3, we can express it in polar form by
calculating its magnitude and angle:

|z| =
√

22 + 3 =
√

7, θ = tan−1(

√
3

2
).

Therefore,

z = 2 + j
√

3 =
√

7ej tan−1(
√

3
2

).
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Figure R4.1: Representation of a complex number z in Cartesian form and
polar form.

The conjugate of a complex number in Cartesian form is obtained by
negating the imaginary part:

z∗ = (x + jy)∗ = x∗ + (jy)∗ = x− jy.

In polar form, the conjugate is obtained by changing the sign of the angle:

z∗ = (rejθ)∗ = r e−jθ.

R4.2 Complex Arithmetic

(1) Addition and Subtraction

z1 = x1 + jy1 and z2 = x2 + jy2 be two complex numbers. Then

z1 + z2 = (x1 + x2) + j(y1 + y2)

where (x1 + x2) are (y1 + y2) are the real and imaginary parts of the sum
z1 + z2, respectively. Similarly,

z1 − z2 = (x1 − x2) + j(y1 − y2)

where (x1−x2) are (y1−y2) are the real and imaginary parts of the difference
z1 − z2, respectively.
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Example R4.2. Let z1 = 1.3 + j5.2 and z2 = 2.7− j3.6 then

z1 + z2 = (1.3 + j5.2) + (2.7− j3.6) = 4 + j1.6

z1 − z2 = (1.3 + j5.2)− (2.7− j3.6) = −1.4 + 8.8j.

(2) Multiplication

Let z1 = x1 + jy1 and z2 = x2 + jy2 then

z1 · z2 = (x1 + jy1)(x2 + jy2)

= x1x2 + jx1y2 + jx2y1 + j2y1y2

= (x1x2 − y1y2) + j(x1y2 + x2y1).

Example R4.3. Let z1 = 1 + j
√

3, z2 = 2 − j2. The product of z1, z2

calculated in polar form is given by

(1 + j
√

3)(2− j2) = 2ejπ/3 · 2
√

2e−jπ/4 = 4
√

2ejπ/12 = 5.4641 + j1.4641.

Calculating in the Cartesian form we get

(1 + j
√

3)(2− j2) = (2 + 2
√

3) + j(2
√

3− 2) = 5.4641 + j1.4641.

(3) Division

The division of two complex numbers z0 and z1 can be carried out either in
polar form or in Cartesian form. In the former case

w =
z0

z1

=
r0e

jθ0

r1ejθ1
=

r0

r1

ej(θ0−θ1).

In the latter case

w =
z0

z1

=
x0 + jy0

x1 + jy1

=
(x0 + jy0)(x1 − jy1)

(x1 + jy1)(x1 − jy1)
=

(x0x1 + y0y1) + j(x1y0 − x0y1)

x2
1 + y2

1

.

Example R4.4. To divide 2 + j2 by 1 − j, we calculate in polar form as
follows:

2 + j2

1− j
=

2
√

2ej π
4

√
2e−j π

4

= 2ej(π
4
)−(−π

4
) = 2ej π

2 = j2.

Calculating in the Cartesian form we get

2 + j2

1− j
=

(2 + j2)(1 + j)

(1− j)(1 + j)
=

(2− 2) + j(2 + 2)

12 + 12
= j2.
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(4) Inverse

The inverse of a complex number is a special case of division where the
numerator is 1. In polar form we have

z−1 =
1

z
=

1

rejθ
=

1

r
e−jθ.

Equivalently, in the Cartesian form we have

z−1 =
1

z
=

1

x + jy
=

x− jy

(x + jy)(x− jy)
=

x− jy

x2 + y2
.

R5 Complex Variables

R5.1 Function of a Complex Variable

A function of the complex variable z can be written as

f(z) = u(z) + jv(z)

where u(z) and v(z) are real functions of z. In the Cartesian form, we define
z = x + jy for real x and y. Therefore, the values of u(z) and v(z) depend
on x and y, and we can express the complex function f(z) as

f(z) = u(x, y) + jv(x, y).

If z = rejθ, then f(z) can be expressed as

f(z) = u(r, θ) + jv(r, θ),

where u(r, θ) and v(r, θ) are the real and imaginary parts of f(z).

R5.2 Analytic Function of a Complex Variable

Definition R5.1. A function f(z) is said to be differentiable at a point z0

in the z-plane if the limit

f ′(z0) = lim
4z→0

f(z0 +4z)− f(z0)

4z

exists. Note that f(z0 +4z) can approach f(z0) along any path. This limit
is called the derivative of f(z) at point z0.

Definition R5.2. A function f(z) of a complex variable z is analytic in the
region R in the complex z-plane if and only if all the derivatives of f(z) exist
at all points inside the region R.
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R5.3 Analytic Continuation

If the values of a function f(z) of a complex variable are known everywhere
on a closed contour C inside a region R where f(z) is analytic, then the
values of f(z) at all points in R can be found by mapping from the contour
C to any point in R.

R5.4 Cauchy’s Integral Formula

If a function f(z) is analytic both on and inside a counterclockwise closed
contour C and if z0 is any point inside C, then

f(z0) =
1

2πj

∮
C

f(z)
1

z − z0

dz, (R5.1)

f ′(z0) =
1

2πj

∮
C

f(z)
1

(z − z0)2
dz (R5.2)

f ′′(z0) =
2

2πj

∮
C

f(z)
1

(z − z0)3
dz (R5.3)

... (R5.4)

f (n)(z0) =
n!

2πj

∮
C

f(z)
1

(z − z0)n+1
dz. (R5.5)

where f ′(z0) = d f(z)
dz

∣∣∣
z=z0

, f ′′(z0) = d2 f(z)
dz2

∣∣∣
z=z0

, and f (n)(z0) = dn f(z)
dzn

∣∣∣
z=z0

.

Eq.(R5.1) is often referred as the Cauchy’s integral formula.

By combining Eq.(R5.1) - Eq.(R5.5) we arrive at an useful relation:

1

2πj

∮
C

zk−1 dz =

{
1 , k = 0
0 , k 6= 0

(R5.6)

where C is a counterclockwise closed contour encircling z = 0.

R5.5 Cauchy’s Residue Theorem

If a function f(z) is analytic both on and inside a counterclockwise closed
contour C except at poles zk, k = 1, 2, ..., n, then

1

2πj

∮
C

f(z) dz =
∑

k

[
residue of f(z) at pole zk inside C

]
. (R5.7)
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In the case when f(z) is a rational function of z and has pole at z = zk

of multiplicity m, we can express f(z) as

f(z) =
Γ(z)

(z − zk)m
,

where Γ(z) does not have any pole at z = zk. Thus the residue of f(z) at
the pole zk inside C is given by

1

(m− 1)!

[dm−1Γ(z)

d zm−1

]
z=zk

. (R5.8)

R6 Continuous-Time Signals

R6.1 Energy and Power

The total energy of a continuous-time signal x(t) is given by

Ex = lim
T→∞

∫ T

−T

|x(t)|2 dt.

The average power of a continuous-time x(t) is given by

Px = lim
T→∞

1

2T

∫ T

−T

|x(t)|2 dt.

The definition of total energy can explained as the area under the squared
signal |x(t)|2, and it is a measurement of the strength of the signal x(t) over
infinite time. However, there are signals with infinite energy so we need
to evaluate the average power of the signal x(t) as a measurement of the
strength over one unit time.

R6.2 Continuous-Time Sinusoidal and Exponential Sig-
nals

R6.2.1 Definition

The continuous-time real sinusoidal signal with constant amplitude is of
the form

x(t) = A cos(Ω0t + φ), (R6.1)

20



where A, Ω0 and φ are real numbers. The parameters A, Ω0 and φ are called,
respectively, the amplitude, the angular frequency, and the phase of the
sinusoidal signal x(t).

The complex exponential signal is expressed in the form

x(t) = Aαt, (R6.2)

where

α = eσ0+jΩ0 , A = |A| ejφ. (R6.3)

If A and α are both real, the signal of Eq. (R6.2) reduces to real
exponential signal. For t ≥ 0 such a signal with |α| < 1 decays expo-
nentially as t increases and with |α| > 1 grows exponentially as t increases.

In addition, we can rewrite Eq. (R6.2) as

x(t) = Ae(σ0+jΩ0)t = |A| eσ0t ej(Ω0t+φ) (R6.4)

= |A| eσ0t cos(Ω0t + φ) + j|A| eσ0t sin(Ω0t + φ). (R6.5)

Thus the real and imaginary parts of a complex exponential signal are real
sinusoidal signals.

The fundamental period T0 of a complex exponential signal (Eq. (R6.4))
with σ0 = 0 is defined to be the smallest positive T0 satisfying

|A| ej(Ω0t+φ) = |A| ej(Ω0(t+T0)+φ), (R6.6)

or equivalently,
ejΩ0T0 = 1. (R6.7)

Therefore,

T0 =
2π

|Ω0|
. (R6.8)

R6.2.2 Properties

The properties of continuous-time sinusoidal and exponential signals and
comparisons with discrete-time sinusoidal and exponential sequences are dis-
cussed as follows.
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1. Periodicity for any choice of Ω0

Note that the continuous-time sinusoidal signal A cos(Ω0t + φ) (Eq.
(R6.1)) and the continuous-time complex exponential signal |A| ej(Ω0t+φ)

are periodic signals of any choice of Ω0. However, discrete-time se-
quences are not always periodic with any choice of ω0. Discrete si-
nusoidal sequence A cos(ω0n + φ) and discrete complex exponential se-
quence |A| ej(ω0n+φ) are periodic with period N only if ω0N is an integer
multiple of 2π, i.e., ω0N = 2πr where N and r are positive integers.
For example, cos(πn

4
) is a periodic sequence while cos(n

4
) is not periodic.

2. Distinctness for different Ω0, Ω1

Any two continuous-time sinusoidal signals

A cos(Ω0t + φ), A cos(Ω1t + φ), Ω0 6= Ω1

have different waveforms. Similarly, any two continuous-time exponen-
tial signals with Ω0 6= Ω1 also have different waveforms. Unlike the
continuous-time case, discrete-time sinusoidal sequences

A cos(ω0n + φ), A cos(ω1n + φ), ω0 = ω1 + 2πk

have the same sequence values. Similarly, any two discrete-time ex-
ponential sequences with ω0 = ω1 + 2πk also have the same sequence
values.

R6.3 Continuous-Time Eigenfunction

If the input signal of any LTI system has output signal being the input signal
multiplied by a complex constant, this certain type of input signal is called
the eigenfunction and the complex constant is called the eigenvalue.

Example R6.1. We want to show that the complex exponential signal de-
fined in Eq. (R6.2)

x(t) = Aαt

is an eigenfunction of an LTI continuous-time system with an impulse re-
sponse h(t).
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By using the convolution integral, we have

y(t) =

∫ ∞

−∞
h(τ)Aα(t−τ) dτ

=
(∫ ∞

−∞
h(τ)α−τ dτ

)
Aαt.

Since the integral inside the brackets is independent of t, we can therefore
say that the input signal Aαt is an eigenfunction.

Example R6.2. We want to show that the sum of any two complex expo-
nential signals

x(t) = Aαt + Bβt

is not an eigenfunction of an LTI continuous-time system with an impulse
response h(t).

By using the convolution integral, we have

y(t) =

∫ ∞

−∞
h(τ)

(
Aα(t−τ) + Bβ(t−τ)

)
dτ

=
(∫ ∞

−∞
h(τ)α−τ dτ

)
Aαt +

(∫ ∞

−∞
h(τ)β−τ dτ

)
Bβt.

Since the input signal x(t) cannot be extracted from the summation above,
we can therefore say that the input signal Aαt +Bβt is not an eigenfunction.

R6.4 Continuous-Time Fourier Series

R6.4.1 Definition

Given a periodic continuous-time signal x(t) with period T0 and fundamental
frequency Ω0 = 2π/T0, the Fourier series expansion of x(t) is given by the
linear combination of the set of harmonically related complex exponentials

ejkΩ0t = e
jk 2π

T0
t
, k = 0,±1,±2, ...,

i.e.,

x(t) =
∞∑

k=−∞

ake
jkΩ0t =

∞∑
k=−∞

ake
jk 2π

T0
t

(R6.9)

ak =
1

T0

∫
T0

x(t)e−jkΩ0t dt =
1

T0

∫
T0

x(t)e
−jk 2π

T0
t
dt. (R6.10)
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Note that the notation
∫

T0
denotes the integration over any interval of

length T0. The Eq.(R6.9) is referred to as the synthesis equation and the
Eq.(R6.10) is referred to as the analysis equation. The coefficient ak is called
the Fourier series coefficient.

Table R6.1: Properties of Continuous-Time Fourier Series.

Type of Periodic Signal with Fourier Series
Property frequency Ω0 = 2π/T Coefficients

g(t) ak

h(t) bk

Linearity αg(t) + βh(t) αak + βbk

Time Shifting g(t− t0) ake
−jkΩ0t0

Frequency Shifting ejMΩ0tg(t) ak−M

Multiplication g(t)h(t)
∑∞

l=−∞ albk−l

Time Reversal g(−t) a−k

Conjugation g∗(t) a∗−k

Time Scaling g(αt), α > 0 ak

Periodic Convolution
∫

T
g(τ)h(t− τ) dτ Takbk

Example R6.3. Find the Fourier series coefficients of the continuous-time
signal

x(t) = 1 + cos(Ω0t) + 2 cos(2Ω0t +
π

3
) + 4 sin(3Ω0t−

π

4
)

with fundamental frequency Ω0.
By using the Euler’s Formula, it can be shown that

x(t) = 1 +
1

2
(ejΩ0t + e−jΩ0t) +

2

2
(ej(2Ω0t+π

3
) + e−j(2Ω0t+π

3
)) +

4

2j
(ej(3Ω0t−π

4
) − e−j(3Ω0t−π

4
))

= 1 +
1

2
ejΩ0t +

1

2
e−jΩ0t + ej π

3 ej2Ω0t + e−j π
3 e−j2Ω0t +

2

j
e−j π

4 ej3Ω0t − 2

j
ej π

4 e−j3Ω0t.

Therefore, the Fourier series coefficients are
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a0 = 1,

a1 =
1

2
, a−1 =

1

2
,

a2 = ej π
3 =

1 + j
√

3

2
, a−2 = e−j π

3 =
1− j

√
3

2
,

a3 =
2

j
e−j π

4 =
√

2(−1− j), a−3 = −2

j
ej π

4 =
√

2(−1 + j),

ak = 0, |k| > 3.

Example R6.4. Find the Fourier series coefficients of the impulse train

x(t) =
∞∑

k=−∞

δ(t− kT0)

with period T0.
By calculating Eq.(R6.10) in the interval −T0/2 ≤ t ≤ T0/2, we can get

ak =
1

T0

∫ T0/2

−T0/2

δ(t)e
−jk 2π

T0
t
dt =

1

T0

.

Therefore, all the Fourier series coefficients of the impulse train have the
same value 1/T0.

Some important properties of continuous-time Fourier series are listed in
Table R6.1 for quick reference.

R6.4.2 Dirichlet Conditions

In order to verify the existence of Fourier series representation for a peri-
odic signal x(t), we need to examine the Dirichlet conditions. The Dirichlet
conditions are given by:

1. x(t) must be absolutely integrable, i.e.,∫
T0

|x(t)| dt < ∞
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2. In any finite interval of time, x(t) has a finite number of local maxima
and local minima.

3. In any finite interval of time, x(t) has a finite number of discontinuities.

The Dirichlet conditions guarantee that x(t) equals its Fourier series rep-
resentation

∞∑
k=−∞

ake
jkΩ0t

at all values of t except at discontinuities of x(t). Note that Dirichlet condi-
tions are only sufficient but not necessary conditions.

R6.5 Continuous-Time Fourier Transform

Given an aperiodic continuous-time signal x(t), the continuous-time Fourier
transform of x(t) is given by

X(jΩ) =

∫ ∞

−∞
x(t)e−jΩt dt (R6.11)

x(t) =
1

2π

∫ ∞

−∞
X(jΩ)ejΩt dΩ. (R6.12)

The transform X(jΩ) is referred to as the spectrum of x(t) because it pro-
vides the information of x(t) when evaluated by complex exponential signals
at different frequencies.

Some important properties of continuous-time Fourier transform are listed
in Table R6.2 for quick reference.
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Table R6.2: Properties of Continuous-Time Fourier Transform.

Property Signal Fourier Transform

g(t) G(jΩ)
h(t) H(jΩ)

Linearity αg(t) + βh(t) αG(jΩ) + βH(jΩ)

Time Shifting g(t− t0) G(jΩ)e−jΩt0

Frequency Shifting ejΩ0tg(t) G(j(Ω− Ω0))

Multiplication g(t)h(t) 1
2π

G(jΩ) ∗H(jΩ)

Time Reversal g(−t) G(−jΩ)

Conjugation g∗(t) G∗(−jΩ)

Time Scaling g(αt) 1
|α|G

(
jΩ
α

)
Convolution g(t) ∗ h(t) G(jΩ)H(jΩ)

Differentiation in Time d
d t

g(t) jΩG(jΩ)

Integration
∫ t

−∞ g(τ) dτ 1
jΩ

G(jΩ) + πG(0)δ(Ω)

Real and Even in Time g(t) real and even G(jΩ) real and even

Real and Odd in Time g(t) real and odd G(jΩ) purely imaginary and odd

R7 Discrete Fourier Series

Given a periodic sequence x[n] with period N , the fundamental period is
defined to be the smallest integer N such that x[n] = x[n + N ] is satisfied,
and the fundamental frequency is defined to be ω0 = 2π/N . The harmonics
are sequences whose frequencies are integer multiples of the fundamental
frequency. For discrete complex exponential signals, the k − th harmonic is
expressed as

ejkω0n = ejk 2π
N

n, k = 0,±1,±2, · · · .

Note that there are only N distinct harmonics for discrete complex ex-
ponential signals with fundamental frequency ω0 = 2π/N because every two
signals with frequencies which differ in 2πm have the same waveform, i.e,

ejk(ω0+2mπ)n = ejk( 2π
N

+2mπ)n = ejk( 2π
N

)n · ejk2mnπ = ejk( 2π
N

)n.
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The discrete Fourier series expansion of periodic signal x[n] is the expres-
sion in form of a linearly weighted combination of a fundamental and a series
of harmonic complex exponential signals.

x[n] =
N−1∑
k=0

ake
jkω0n =

N−1∑
k=0

ake
jk 2π

N
n,

where

ak =
1

N

N−1∑
n=0

x[n]e−jkω0n =
1

N

N−1∑
n=0

x[n]e−jk 2π
N

n.

Example R7.1. Calculate the Fourier series coefficients ak for the following
periodic signal

{x[n]} = {..., 1, 1, 1, 1, 0, 0, ...}.
↑

We can observe that N = 6 so

ak = 1
6

∑5
n=0 x[n]e−jk( 2π

6
)6

= 1
6
(e−jk( 2π

6
)0 + e−jk( 2π

6
)1 + e−jk( 2π

6
)2 + e−jk( 2π

6
)3 + 0 + 0)

= 1
6
(1 + e−jk π

3 + e−jk 2π
3 + e−jkπ)

= 1
6
(1 + e−jk π

3 + (−1)kejk π
3 + (−1)k).

Example R7.2. Calculate signal x[n] from the following Fourier series co-
efficients ak

{ak} = {..., 1/4, 1/2, 1, 1/2, 1/4, 0, 1/4, 1/2, 1, 1/2...}.
↑ .

We can observe that N = 6 so

x[n] =
∑

k=<N>

ake
jk 2π

6
n = 1 +

1

2
ej 2π

6
n +

1

4
ej 2π

6
2n + 0 +

1

4
ej 2π

6
4n +

1

2
ej 2π

6
5n

= 1 +
1

2
ej πn

3 +
1

4
ej 2πn

3 + 0 +
1

4
ej 4πn

3 +
1

2
ej 5πn

3

= 1 +
1

2
ej πn

3 +
1

4
ej 2πn

3 + 0 +
1

4
ej(2πn− 2πn

3
) +

1

2
ej(2πn−πn

3
)

= 1 +
1

2
ej πn

3 +
1

4
ej 2πn

3 + 0 +
1

4
e−j 2πn

3 +
1

2
e−j πn

3

= 1 + cos(
πn

3
) +

1

2
cos(

2πn

3
).
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R8 Matrix Algebra

R8.1 Definition

A matrix is a rectangular array of real or complex numbers enclosed in brack-
ets; for instance,

[
3 4
1 2

]
,

[
3 5 6
2 1 −3

]
,

 3j 5
2− 4j 1 + j

7 5− 3j

 .

A matrix with K rows and M columns is called a K × M matrix. For
example, the matrix 1 0 0

0 1 0
0 0 1


is a 3× 3 matrix. The matrix 

1 4
2 6

−3j 1
1 + j 1


is a 4× 2 matrix. The matrix

U =


a11 a12 · · · a1M

a21 a22 · · · a2M
...

...
. . .

...
aK1 aK2 · · · aKM

 (R8.1)

is a K ×M matrix and the number ars, r = 1, 2, ..., K, and s = 1, 2, ..., M
is called the entry of U.

R8.2 Transpose

The transpose, UT , of a K ×M matrix U is the M ×K matrix formed by
interchanging the rows and columns of U. For example, the transpose of the
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matrix U given in Eq.(R8.1) is a M ×K matrix given by

UT =


a11 a21 · · · aK1

a12 a22 · · · aK2
...

...
. . .

...
a1M a2M · · · aKM

 . (R8.2)

R8.3 Toeplitz Matrix

The N ×N matrix U is a Toeplitz matrix if all entries along the line parallel
to the main diagonal are the same. For example,

U =


a0 a−1 a−2 a−3

a1 a0 a−1 a−2

a2 a1 a0 a−1

a3 a2 a1 a0


is a 4× 4 Toeplitz matrix.

R8.4 Circulant Matrix

The N×N matrix U is a circulant matrix if each row equals the right circular
shift of the previous row by one entry. For example,

U =


a0 a1 a2 a3

a3 a0 a1 a2

a2 a3 a0 a1

a1 a2 a3 a0


is a 4× 4 Circulant matrix.

R8.5 Determinant

If the 2× 2 matrix U is

U =

[
a11 a12

a21 a22

]
, (R8.3)

then the determinant of the U is given by

det(U) = a11a22 − a12a21. (R8.4)
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Example R8.1. The determinant of the matrix

U =

[
3 4
1 2

]
is det(U) = 3 · 2− 4 · 1 = 6− 4 = 2.

If the 3× 3 matrix U is

U =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (R8.5)

then the determinant of U is given by

det(U) = a11a22a33 +a21a32a13 +a12a23a31−a13a22a31−a11a32a23−a12a21a33.
(R8.6)

Example R8.2. The determinant of the matrix1 4 −6
2 1 3
4 5 −2


is

det(U) = 1 · 1 · (−2) + 2 · 5 · (−6) + 4 · 3 · 4− (−6) · 1 · 4− 1 · 5 · 3− 4 · 2 · (−2)

= (−2) + (−60) + 48− (−24)− 15− (−16) = 11.

If the N ×N matrix U is

U =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

 , (R8.7)

then the determinant of U is

det(U) = ar1(−1)r+1Mr1 + ar2(−1)r+2Mr2 + · · ·+ arN(−1)r+NMrN (R8.8)

= a1s(−1)1+sM1s + a2s(−1)2+sM2s + · · ·+ aNs(−1)N+sMNs (R8.9)

where r, s = 1 or 2 or 3 · · · , or N and Mrs is the minor of ars (see Section
R8.6).
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Example R8.3. To calculate the determinant of the matrix

U =


1 6 −4 6
−7 1 3 −6
2 −3 6 5
−2 4 2 6

 , (R8.10)

we first calculate the minors

M11 =

 1 3 −6
−3 6 5
4 2 6

 = 320, M12 =

−7 3 −6
2 6 5
−2 2 6

 = −344

M13 =

−7 1 −6
2 −3 5
−2 4 6

 = 232, M14 =

−7 1 3
2 −3 6
−2 4 2

 = 200.

The determinant is therefore given by

det(U) = 1 · (−1)1+1 · 320 + 6 · (−1)1+2 · (−344) + (−4) · (−1)1+3 · 232 + 6 · (−1)1+4 · 200

= 320 + 2064− 928− 1200 = 256.

R8.6 Minor and Cofactor

From U given in Eq.(R8.7), the minor Mrs of ars in U is defined to be the
determinant of the (N −1)× (N −1) matrix formed by deleting the r-th row
and s-th column of U. For example,

M11 =

∣∣∣∣∣∣∣∣∣
a22 a23 · · · a2N

a32 a33 · · · a3N
...

...
. . .

...
aN2 aN3 · · · aNN

∣∣∣∣∣∣∣∣∣ , M12 =

∣∣∣∣∣∣∣∣∣
a21 a23 · · · a2N

a31 a33 · · · a3N
...

...
. . .

...
aN1 aN3 · · · aNN

∣∣∣∣∣∣∣∣∣ .

The cofactor Crs of ars in U given in Eq.(R8.7) is defined to be

Crs = (−1)r+sMrs. (R8.11)
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R8.7 Inverse of a Matrix

By Eq.(R8.7), if det(U) 6= 0, then the inverse of U exists and is uniquely
given by

U−1 =
1

det(U)


C11 C21 · · · CN1

C12 C22 · · · CN2
...

...
. . .

...
C1N C2N · · · CNN

 , (R8.12)

where Crs = (−1)r+sMrs is the cofactor of ars in U given in Eq.(R8.7).

Example R8.4. In this example we want to find the inverse of the matrix
given in Eq.(R8.10). The cofactors are calculated as follows:

C11 = (−1)1+1M11 = 320, C12 = (−1)1+2M12 = 344,

C13 = (−1)1+3M13 = 232, C14 = (−1)1+4M14 = −200

C21 = (−1)2+1M21 = 176, C22 = (−1)2+2M22 = 210,

C23 = (−1)2+3M23 = 158, C24 = (−1)2+4M24 = −134

C31 = (−1)3+1M31 = 240, C32 = (−1)3+2M32 = 234,

C33 = (−1)3+3M33 = 198, C34 = (−1)3+4M24 = −142

C41 = (−1)4+1M41 = −344, C42 = (−1)4+2M42 = −329,

C43 = (−1)4+3M43 = −239, C44 = (−1)4+4M44 = 227.

Therefore, the inverse is

U−1 =
1

256


320 176 240 −344
344 210 234 −329
232 158 198 −239
−200 −134 −142 227

 .

R8.8 Unitary Matrix and Orthogonal Matrix

The N ×N matrix U is said to be unitary if

UHU = UUH = kI, (R8.13)

where k is any nonzero constant and UH = (UT )∗ is the conjugate-transpose
of U. Note that the unitary matrix is always invertible and UH = U−1.
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A real unitary matrix U is also called an orthogonal matrix, i.e.,

UTU = UUT = kI, (R8.14)

where k is any nonzero constant and UT is the transpose of U. Similarly,
the orthogonal matrix is always invertible and UH = U−1. If k = 1, then
the matrix U is said to be orthonormal.

R8.9 Cramer’s Rule

Consider the set of N linear equations

a11x1 + a12x2 + · · · · · ·+ a1NxN = b1,

a21x1 + a22x2 + · · · · · ·+ a2NxN = b2,

...

aN1x1 + aN2x2 + · · · · · ·+ aNNxN = bN ,

(R8.15)

writing in matrix form yields
a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN




x1

x2
...

xN

 =


b1

b2
...

bN

 . (R8.16)

Let D be the determinant of the coefficient matrix

D =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

∣∣∣∣∣∣∣∣∣ . (R8.17)

If D 6= 0, then the system(R8.15) has the unique solution

x1 =
D1

D
, x2 =

D2

D
, · · · , xN =

DN

D
, (R8.18)

where

D1 =

∣∣∣∣∣∣∣∣∣
b1 a12 · · · a1N

b2 a22 · · · a2N
...

...
. . .

...
bN aN2 · · · aNN

∣∣∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣∣∣
a11 b1 · · · a1N

a21 b2 · · · a2N
...

...
. . .

...
aN1 bN · · · aNN

∣∣∣∣∣∣∣∣∣ , · · · , etc.
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