## R. Review Materials

## Contents

R1 Mathematical Formulas and Identities ..... 1
R1.1 Finite and Infinite Sums of Numbers ${ }^{1}$ ..... 1
R1.2 Power Series ..... 2
R1.3 Factorial ..... 3
R1.4 Permutations and Combinations ..... 3
R1.5 Polynomial Factors and Products ..... 3
R1.6 Roots of Quadratic Equation ..... 4
R1.7 Euler's Formula ..... 4
R1.8 Trigonometric Functions and Formulas ..... 5
R1.9 Newton-Raphson Method: Finding a root of a polynomial equation ..... 6
R1.10 Hölder's Inequality and Cauchy-Schwartz's Inequality ..... 7
R2 Useful Functions ..... 9
R3 Commonly Used Differentials and Integrals ..... 11
R3.1 Differentials ..... 11
R3.2 Integrals ..... 11
R3.3 l'Hôpital's Rule ..... 12
R3.4 Examples ..... 12
R4 Complex Numbers ..... 15
R4.1 Definition ..... 15
R4.2 Complex Arithmetic ..... 16
R5 Complex Variables ..... 18
R5.1 Function of a Complex Variable ..... 18
R5.2 Analytic Function of a Complex Variable ..... 18
R5.3 Analytic Continuation ..... 19
R5.4 Cauchy's Integral Formula ..... 19
R5.5 Cauchy's Residue Theorem ..... 19
R6 Continuous-Time Signals ..... 20
R6.1 Energy and Power ..... 20
R6.2 Continuous-Time Sinusoidal and Exponential Signals ..... 20
R6.2.1 Definition ..... 20
R6.2.2 Properties ..... 21
R6.3 Continuous-Time Eigenfunction ..... 22
R6.4 Continuous-Time Fourier Series ..... 23
R6.4.1 Definition ..... 23
R6.4.2 Dirichlet Conditions ..... 25
R6.5 Continuous-Time Fourier Transform ..... 26
R7 Discrete Fourier Series ..... 27
R8 Matrix Algebra ..... 29
R8.1 Definition ..... 29
R8.2 Transpose ..... 29
R8.3 Toeplitz Matrix ..... 30
R8.4 Circulant Matrix ..... 30
R8.5 Determinant ..... 30
R8.6 Minor and Cofactor ..... 32
R8.7 Inverse of a Matrix ..... 33
R8.8 Unitary Matrix and Orthogonal Matrix ..... 33
R8.9 Cramer's Rule ..... 34

## R1 Mathematical Formulas and Identities

## R1.1 Finite and Infinite Sums of Numbers ${ }^{1}$

$$
\begin{align*}
& \sum_{k=1}^{n} k=\frac{n(n+1)}{2}  \tag{R1.1}\\
& \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}  \tag{R1.2}\\
& \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}  \tag{R1.3}\\
& \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}  \tag{R1.4}\\
& \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90} \tag{R1.5}
\end{align*}
$$

where $n$ is a positive integer.
Note: The series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k} \tag{R1.6}
\end{equation*}
$$

does not converge.

$$
\begin{equation*}
\sum_{k=0}^{n-1} d^{k}=\frac{1-d^{n}}{1-d} \tag{R1.7}
\end{equation*}
$$

with $d$ arbitrary integer and $|d| \neq\{1,0\}$.

$$
\begin{equation*}
\sum_{k=0}^{\infty} d^{k}=\frac{1}{1-d} \tag{R1.8}
\end{equation*}
$$

with $0<|d|<1$.

[^0]
## R1.2 Power Series

## Binomial Series:

$(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\binom{n}{3} x^{n-3} y^{3}+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n}$,
with $n$ a positive integer.

## Taylor Series:

If $f(x)$ is an arbitrarily differentiable function, then it can be expressed in the form

$$
\begin{equation*}
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots, \tag{R1.10}
\end{equation*}
$$

where $f^{\prime}(a)=\left.\frac{d f(x)}{d x}\right|_{x=a}, f^{\prime \prime}(a)=\left.\frac{d^{2} f(x)}{d x^{2}}\right|_{x=a}$, and $f^{(n)}(a)=\left.\frac{d^{n} f(x)}{d x^{n}}\right|_{x=a}$.

## Exponential Series:

$$
\begin{align*}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots  \tag{R1.11}\\
& a^{x}=1+x \log _{e} a+\frac{\left(x \log _{e} a\right)^{2}}{2!}+\frac{\left(x \log _{e} a\right)^{3}}{3!}+\cdots \tag{R1.12}
\end{align*}
$$

## Logarithmic Series:

$\log _{e}(1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots,($ Region of Convergence $:-1<x<1)$.

## Trigonometric Series:

$$
\begin{align*}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots,  \tag{R1.14}\\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots,  \tag{R1.15}\\
& \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\cdots,\left(\text { Region of Convergence }: x^{2}<\frac{\pi^{2}}{4}\right), \tag{R1.16}
\end{align*}
$$

$\cot x=\frac{1}{x}-\frac{x}{3}-\frac{x^{3}}{45}-\frac{2 x^{5}}{945}+\cdots,($ Region of Convergence : $0<|x|<\pi)$.

## R1.3 Factorial

$$
\begin{align*}
n! & =n(n-1)(n-2) \cdots 2 \cdot 1, \quad \text { with } n \text { a nonnegative integer },  \tag{R1.18}\\
0! & =\Gamma(0+1)=1 \tag{R1.19}
\end{align*}
$$

## R1.4 Permutations and Combinations

The number of permutations $S$ of $n$ things taken $k$ at a time, with $n$ and $k$ positive integers, is given by

$$
\begin{equation*}
S=\frac{n!}{(n-k)!} \tag{R1.20}
\end{equation*}
$$

The number of combinations $S$ of $n$ things taken $k$ at a time, with $n$ and $k$ positive integers, is given by

$$
\begin{equation*}
S=\binom{n}{k}=\frac{n!}{k!(n-k)!} . \tag{R1.21}
\end{equation*}
$$

## R1.5 Polynomial Factors and Products

$$
\begin{equation*}
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+y^{n-1}\right) \tag{R1.22}
\end{equation*}
$$

with $n$ a positive integer.

$$
\begin{equation*}
x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+x^{n-3} y^{2}-\cdots+y^{n-1}\right), \tag{R1.23}
\end{equation*}
$$

with $n$ a positive and odd integer.

$$
\begin{align*}
\prod_{i=1}^{N}\left(x+\xi_{i}\right) & =\left(x+\xi_{1}\right)\left(x+\xi_{2}\right) \cdots\left(x+\xi_{N}\right)  \tag{R1.24}\\
& =\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{N-1} x^{N-1}+\alpha_{N} x^{N}
\end{align*}
$$

where

$$
\begin{aligned}
\alpha_{0} & =\prod_{i=1}^{N} \xi_{i}, \quad \alpha_{1}=\sum_{i=1}^{N} \frac{\alpha_{0}}{\xi_{i}}, \quad \alpha_{2}=\sum_{\substack{i \neq j \\
i, j=1}}^{N} \frac{\alpha_{0}}{\xi_{i} \xi_{j}}, \quad \cdots, \\
\alpha_{N-1} & =\xi_{1}+\xi_{2}+\xi_{3}+\cdots+\xi_{N}, \quad \alpha_{N}=1 .
\end{aligned}
$$

## R1.6 Roots of Quadratic Equation

The roots $x_{1}, x_{2}$ of the quadratic equation

$$
a x^{2}+b x+c=0,
$$

with $a, b$, and $c$ real numbers, are given by

$$
\begin{align*}
& x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a},  \tag{R1.25}\\
& x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} . \tag{R1.26}
\end{align*}
$$

Note:

$$
\begin{align*}
x_{1}+x_{2} & =\frac{-b}{a},  \tag{R1.27}\\
x_{1} x_{2} & =\frac{c}{a} . \tag{R1.28}
\end{align*}
$$

## R1.7 Euler's Formula

$$
\begin{equation*}
e^{j \theta}=\cos \theta+j \sin \theta, \tag{R1.29}
\end{equation*}
$$

with $\theta$ a real number.

## R1.8 Trigonometric Functions and Formulas

$$
\begin{align*}
\sin \theta & =\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right)  \tag{R1.30}\\
\cos \theta & =\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right),  \tag{R1.31}\\
\tan \theta & =\frac{\sin \theta}{\cos \theta}=\frac{\left(e^{j \theta}-e^{-j \theta}\right)}{j\left(e^{j \theta}+e^{-j \theta}\right)},  \tag{R1.32}\\
\cot \theta & =\frac{1}{\tan \theta}=\frac{j\left(e^{j \theta}+e^{-j \theta}\right)}{\left(e^{j \alpha}-e^{-j \theta}\right)},  \tag{R1.33}\\
\csc \theta & =\frac{1}{\sin \theta}=\frac{2 j}{e^{j \theta}-e^{-j \theta}},  \tag{R1.34}\\
\sec \theta & =\frac{1}{\cos \theta}=\frac{2}{e^{j \theta}+e^{-j \theta}},  \tag{R1.35}\\
\sin \theta & =\cos \left(\frac{\pi}{2}-\theta\right)=\sin (\pi-\theta),  \tag{R1.36}\\
\cos \theta & =\sin \left(\frac{\pi}{2}-\theta\right)=-\cos (\pi-\theta),  \tag{R1.37}\\
\tan \theta & =\cot \left(\frac{\pi}{2}-\theta\right)=-\tan (\pi-\theta),  \tag{R1.38}\\
\sinh \theta & =\frac{1}{2}\left(e^{\theta}-e^{-\theta}\right),  \tag{R1.39}\\
\cosh \theta & =\frac{1}{2}\left(e^{\theta}+e^{-\theta}\right),  \tag{R1.40}\\
\tanh \theta & =\frac{\sinh \theta}{\cosh \theta}=\frac{\left(e^{\theta}-e^{-\theta}\right)}{\left(e^{\theta}+e^{-\theta}\right)}, \tag{R1.41}
\end{align*}
$$

with $\theta$ a real number.

$$
\begin{align*}
\sin \left(\theta_{1} \pm \theta_{2}\right) & =\sin \theta_{1} \cos \theta_{2} \pm \cos \theta_{1} \sin \theta_{2}  \tag{R1.42}\\
\cos \left(\theta_{1} \pm \theta_{2}\right) & =\cos \theta_{1} \cos \theta_{2} \mp \sin \theta_{1} \sin \theta_{2},  \tag{R1.43}\\
\sin ^{2} \theta_{1}-\sin ^{2} \theta_{2} & =\sin \left(\theta_{1}+\theta_{2}\right) \cdot \sin \left(\theta_{1}-\theta_{2}\right),  \tag{R1.44}\\
\cos ^{2} \theta_{1}-\cos ^{2} \theta_{2} & =-\sin \left(\theta_{1}+\theta_{2}\right) \cdot \sin \left(\theta_{1}-\theta_{2}\right),  \tag{R1.45}\\
\cos ^{2} \theta_{1}-\sin ^{2} \theta_{2} & =\cos \left(\theta_{1}+\theta_{2}\right) \cdot \cos \left(\theta_{1}-\theta_{2}\right),  \tag{R1.46}\\
\cos ^{2} \theta_{1}+\sin ^{2} \theta_{2} & =1  \tag{R1.47}\\
\sin \theta_{1} \pm \sin \theta_{2} & =2 \sin \left(\frac{\theta_{1} \pm \theta_{2}}{2}\right) \cdot \cos \left(\theta_{1} \mp \theta_{2}\right),  \tag{R1.48}\\
\cos \theta_{1}+\cos \theta_{2} & =2 \cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right) \cdot \cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right),  \tag{R1.49}\\
\cos \theta_{1}-\cos \theta_{2} & =-2 \sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right) \cdot \sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right),  \tag{R1.50}\\
\sin 2 \theta & =2 \sin \theta \cos \theta,  \tag{R1.51}\\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta  \tag{R1.52}\\
\sin 3 \theta & =3 \sin \theta-4 \sin ^{3} \theta,  \tag{R1.53}\\
\cos 3 \theta & =4 \cos ^{3} \theta-3 \cos \theta \tag{R1.54}
\end{align*}
$$

with $\theta, \theta_{1}$, and $\theta_{2}$ real numbers.

## R1.9 Newton-Raphson Method: Finding a root of a polynomial equation

The Newton-Raphson method is a numerical technique to determine approximately the root of the equation $f(x)=0$. The procedure starts from a initial guess of the root $x=x_{1}$. Then using the recurrence relation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=1,2, \cdots
$$

where

$$
f^{\prime}\left(x_{n}\right)=\left.\frac{d f(x)}{d x}\right|_{x=x_{n}}
$$

the successive approximations $x_{n+1}, n \geq 1$, beginning with $n=1$, can be found. The approximation is assumed to converge when the difference between $x_{n+1}$ and $x_{n}$ is below a prescribed small number, typically $10^{-6}$.

The Newton-Raphson method converges fast to the actual root if the initial guess of the root is close to the actual root. However, there are three main drawbacks: (1) The method fails when $f^{\prime}\left(x_{n}\right)=0$, (2) The method does not always converge, and (3) The method may converge to a root different from that expected if the initial guess $x_{1}$ is far from the actual root.

Example R1.1. In this example, we would like to show how the NewtonRaphson method is used to find the root of $f(x)=x^{3}-3 x^{2}+x-1=0$. Assume the numerical resolution required is 14 decimal digits.

We start with an initial guess of the root $x_{1}=2.5$ :

$$
\begin{aligned}
& x_{1}=2.5, \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2.84210526315789, \\
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=2.77282691999216, \\
& x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}=2.76930129255045, \\
& x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)}=2.76929235429601, \\
& x_{6}=x_{5}-\frac{f\left(x_{5}\right)}{f^{\prime}\left(x_{5}\right)}=2.76929235423863, \\
& x_{7}=x_{6}-\frac{f\left(x_{6}\right)}{f^{\prime}\left(x_{6}\right)}=2.76929235423863 .
\end{aligned}
$$

The recurrence process stops as $\left|x_{7}-x_{6}\right| \leq 10^{-15}$. Hence $x=x_{7}$ is a root of $f(x)$.

## R1.10 Hölder's Inequality and Cauchy-Schwartz's Inequality

The Hölder's inequality for integrals is given by

$$
\begin{equation*}
\left|\int_{a_{0}}^{a_{1}} f(x) g(x) d x\right| \leq\left(\int_{a_{0}}^{a_{1}}|f(x)|^{p} d x\right)^{1 / p}\left(\int_{a_{0}}^{a_{1}}|g(x)|^{q} d x\right)^{1 / q} \tag{R1.55}
\end{equation*}
$$

where

$$
\frac{1}{p}+\frac{1}{q}=1
$$

The equality holds when

$$
f(x)=k g(x)^{p-1}, \text { with } k \text { any constant. }
$$

If $p=q=2$, the inequality becomes Schwartz's inequality

$$
\begin{equation*}
\left|\int_{a_{0}}^{a_{1}} f(x) g(x) d x\right| \leq\left(\int_{a_{0}}^{a_{1}}|f(x)|^{2} d x\right)^{1 / 2}\left(\int_{a_{0}}^{a_{1}}|g(x)|^{2} d x\right)^{1 / 2} \tag{R1.56}
\end{equation*}
$$

The equality holds when

$$
f(x)=k g(x), \text { with } k \text { any constant. }
$$

The Hölder's inequality for sums is given by

$$
\begin{equation*}
\left|\sum_{i=1}^{N} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{N}\left|y_{i}\right|^{q}\right)^{1 / q} \tag{R1.57}
\end{equation*}
$$

where

$$
\frac{1}{p}+\frac{1}{q}=1
$$

The equality holds when

$$
y_{i}=k x_{i}^{p-1}, \text { with } k \text { any constant. }
$$

If $p=q=2$, the inequality becomes Cauchy's inequality

$$
\begin{equation*}
\left|\sum_{i=1}^{N} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{N}\left|y_{i}\right|^{2}\right)^{1 / 2} \tag{R1.58}
\end{equation*}
$$

The equality holds when

$$
y_{i}=k x_{i}, \text { with } k \text { any constant. }
$$

## R2 Useful Functions

1. rect function

$$
\operatorname{rect}(x)=\left\{\begin{array}{ll}
1, & |x|<\frac{1}{2} \\
0, & |x|>\frac{1}{2}
\end{array} .\right.
$$

2. sinc function

$$
\operatorname{sinc}(x)=\frac{\sin \pi x}{\pi x}
$$

3. signum function

$$
\operatorname{sgn}(x)= \begin{cases}+1, & x>0 \\ 0, & x=0 \\ -1, & x<0\end{cases}
$$

4. ceiling function rounds the input $x$ towards the closest integer larger than or equal to $x$ and is denoted as $\lceil x\rceil$.
For example, $\lceil 3.2\rceil=\lceil 3.8\rceil=4$ and $\lceil-3.2\rceil=\lceil-3.9\rceil=-3$.
5. floor function rounds the input $x$ towards the closest integer less than or equal to $x$ and is denoted as $\lfloor x\rfloor$.
For example, $\lfloor 3.2\rfloor=\lfloor 3.8\rfloor=3$ and $\lfloor-3.2\rfloor=\lfloor-3.9\rfloor=-4$.
6. median of a set of real numbers $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ is obtained by rank ordering the numbers in the set and choosing the middle number in the ordered set.

For example, the median of $\{7,13,1,6,3\}$ is 6 and the median of $\{7,13,1,6,3,9\}$ is $(6+7) / 2=6.5$.
7. Dirac delta function $\delta(\tau)$ is a function of $\tau$ with infinite height, zero width, and unit area. It is the limiting form of a unit area pulse function

$$
p_{\Delta}(\tau)= \begin{cases}\frac{1}{2 \Delta}, & -\triangle<\tau \leq \triangle \\ 0, & \text { elsewhere }\end{cases}
$$

as $\triangle$ goes to 0 , i.e.,

$$
\begin{equation*}
\lim _{\Delta \rightarrow 0} \int_{-\infty}^{\infty} p_{\Delta}(\tau) d \omega=\int_{-\infty}^{\infty} \delta(\tau) d \tau=1 \tag{R2.1}
\end{equation*}
$$

Equation(R2.1) also holds even when we reverse the direction of axis $\tau$ and shift $\delta(-\tau)$ by an amount $t$, i.e.,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(t-\tau) d \tau=1 \tag{R2.2}
\end{equation*}
$$

Because of the above properties, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau=\left.x(\tau)\right|_{\tau=t}=x(t) \tag{R2.3}
\end{equation*}
$$

Equation(R2.3) holds for any value of $t$, and it is referred as the sifting property of the Dirac delta function.
8. The modulo operation of integer $X$ over integer $N$ is the residue of $X$ divided by $N$ :

$$
\langle X\rangle_{N}=X-k N, k=\lfloor X / N\rfloor .
$$

It can be verified that the modulo operation is linear. When negative numbers are used, $\langle X\rangle_{N}$ has the same sign as $N$. For example, $\langle 67\rangle_{13}=67-5 \cdot 13=2,\langle 67\rangle_{-13}=67-(-13) \cdot(-6)=-11$ and $\langle-67\rangle_{13}=-67-13 \cdot(-6)=11$.

The statement " $X$ is congruent to $Y$, modulo $N$ " means that

$$
\langle X\rangle_{N}=\langle Y\rangle_{N}
$$

The notation

$$
\left\langle X^{-1}\right\rangle_{N}
$$

denotes the multiplicative inverse of $X$ evaluated modulo $N$, i.e., if $\left\langle X^{-1}\right\rangle_{N}=\alpha$, then $\langle X \alpha\rangle_{N}=1$. For example, $\left\langle 3^{-1}\right\rangle_{4}=3$ because $\langle 3 \cdot 3\rangle_{4}=1$, and $\left\langle 8^{-1}\right\rangle_{5}=2$ because $\langle 8 \cdot 2\rangle_{5}=1$.
In the case of polynomial, the operation $a(z) \bmod b(z)$ is the residue $r(z)$ after the polynomial division $a(z) / b(z)$. For example, if $a(z)=$ $4 z^{-3}+2 z^{-2}+5 z^{-1}+1$ and $b(z)=z^{-2}+3 z^{-1}+4$ then the residue after the division

$$
\frac{a(z)}{b(z)}=4 z^{-1}-10+\frac{19 z^{-1}+41}{z^{-2}+3 z^{-1}+4}
$$

is $19 z^{-1}+41$. Therefore, $a(z) \bmod b(z)=r(z)=19 z^{-1}+41$.

## R3 Commonly Used Differentials and Integrals

## R3.1 Differentials

$$
\begin{align*}
& d(u v)=u d v+v d u  \tag{R3.1}\\
& d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}  \tag{R3.2}\\
& d\left(u^{n}\right)=n u^{n-1} d u  \tag{R3.3}\\
& d e^{u}=e^{u} d u  \tag{R3.4}\\
& d a^{u}=\left(a^{u} \log _{e} a\right) d u  \tag{R3.5}\\
& d\left(\log _{e} u\right)=u^{-1} d u  \tag{R3.6}\\
& d \sin u=\cos u d u  \tag{R3.7}\\
& d \cos u=-\sin u d u . \tag{R3.8}
\end{align*}
$$

## R3.2 Integrals

$$
\begin{align*}
& \int f(g(x)) g^{\prime}(x) d x=\int f(y) d y, y=g(x) \text { and } g^{\prime}(x)=d y / d x  \tag{R3.9}\\
& \int u d v=u v-\int v d u  \tag{R3.10}\\
& \int \frac{f^{\prime}(x) d x}{f(x)}=\log _{e} f(x)  \tag{R3.11}\\
& \int \frac{d x}{x}=\log _{e} x \tag{R3.12}
\end{align*}
$$

$$
\begin{align*}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}  \tag{R3.13}\\
& \int e^{x} d x=e^{x}  \tag{R3.14}\\
& \int a^{x} d x=\frac{a^{x}}{\log _{e} a}  \tag{R3.15}\\
& \int a^{b x} d x=\frac{a^{b x}}{b \log _{e} a}  \tag{R3.16}\\
& \int \log _{e} x d x=x \log _{e} x-x  \tag{R3.17}\\
& \int \sin x d x=-\cos x  \tag{R3.18}\\
& \int \cos x d x=\sin x  \tag{R3.19}\\
& \int \tan x d x=-\log \cos x . \tag{R3.20}
\end{align*}
$$

## R3.3 l'Hôpital's Rule

Consider a fraction $f(x) / g(x)$ for which at $x=x_{0}, f\left(x_{0}\right)=g\left(x_{0}\right)=0$ (or $\left.f\left(x_{0}\right)=g\left(x_{0}\right)=\infty\right)$. Then

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{R3.21}
\end{equation*}
$$

as long as the limits on the right-hand side exist and are finite.

## R3.4 Examples

Example R3.1. Evaluate the integral

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
$$

where

$$
X(\omega)= \begin{cases}\cos (\alpha \omega), & |\omega| \leq \omega_{0} \\ 0, & \omega_{0}<|\omega| \leq \pi\end{cases}
$$

Answer:

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} \cos (\alpha \omega) e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} \frac{1}{2}\left(e^{j \alpha \omega}+e^{-j \alpha \omega}\right) e^{j \omega n} d \omega \\
& =\frac{1}{4 \pi}\left(\int_{-\omega_{0}}^{\omega_{0}} e^{j \alpha \omega} e^{j \omega n} d \omega+\int_{-\omega_{0}}^{\omega_{0}} e^{-j \alpha \omega} e^{j \omega n} d \omega\right) \\
& =\frac{1}{4 \pi}\left(\left.\frac{1}{j(\alpha+n)} e^{j(\alpha+n) \omega}\right|_{-\omega_{0}} ^{\omega_{0}}+\left.\frac{1}{j(-\alpha+n)} e^{j(-\alpha+n) \omega}\right|_{-\omega_{0}} ^{\omega_{0}}\right) \\
= & \frac{1}{4 \pi}\left(\frac{1}{j(\alpha+n)} 2 j \sin (\alpha+n) \omega_{0}+\frac{1}{j(-\alpha+n)} 2 j \sin (-\alpha+n) \omega_{0}\right) \\
= & \frac{\sin (\alpha+n) \omega_{0}}{2 \pi(\alpha+n)}+\frac{\sin (-\alpha+n) \omega_{0}}{2 \pi(-\alpha+n)} .
\end{aligned}
$$

Example R3.2. Evaluate the integral

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
$$

where

$$
X(\omega)= \begin{cases}\omega, & |\omega| \leq \omega_{0} \\ 0, & \omega_{0}<|\omega| \leq \pi\end{cases}
$$

using integration by parts.

Answer:

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} \omega e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi} \cdot \frac{1}{j n} \int_{-\omega_{0}}^{\omega_{0}} \omega e^{j \omega n} d(j n) \omega \\
& =\frac{1}{2 \pi} \cdot \frac{1}{j n} \int_{-\omega_{0}}^{\omega_{0}} \omega d e^{j \omega n} \\
& =\frac{1}{2 \pi} \cdot \frac{1}{j n}\left[\left.\omega e^{j \omega n}\right|_{-\omega_{0}} ^{\omega_{0}}-\int_{-\omega_{0}}^{\omega_{0}} e^{j \omega n} d \omega\right] \\
& =\frac{1}{2 \pi} \cdot \frac{1}{j n}\left[\omega_{0} e^{j \omega_{0} n}-\left(-\omega_{0}\right) e^{-j \omega_{0} n}-\left.\frac{1}{j n} e^{j \omega n}\right|_{-\omega_{0}} ^{\omega_{0}}\right] \\
& =\frac{1}{2 \pi} \cdot \frac{1}{j n}\left[\omega_{0}\left(e^{j \omega_{0} n}+e^{-j \omega_{0} n}\right)-\frac{1}{j n}\left(e^{j \omega_{0} n}-e^{-j \omega_{0} n}\right)\right] \\
& =\frac{1}{\pi(j n)}\left[\omega_{0} \cos \left(\omega_{0} n\right)-\frac{1}{n} \sin \left(\omega_{0} n\right)\right] .
\end{aligned}
$$

## R4 Complex Numbers

## R4.1 Definition

A complex number $z$ is represented in the Cartesian coordinate as

$$
z=x+j y
$$

where $j=\sqrt{-1}$, and $x$ and $y$ are real numbers and denoted as the real and imaginary parts of $z$, respectively. The complex numbers can also be represented in polar form as

$$
z=|z| e^{j \theta}
$$

where $|z|$ and $\theta$ are the magnitude and angle of $z$, respectively:

$$
|z|=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

The principal value of the angle of $z$ is given by

$$
-\pi<\theta \leq \pi
$$

Figure R4.1 shows the representation of a complex number $z$ in the complex plane. By using Euler's Formula (see Eq.(R1.29)) we can find the representation of a complex number in Cartesian form from its polar form:

$$
x=|z| \cos \theta, \quad y=|z| \sin \theta
$$

It should be pointed out here that negative real numbers have angle

$$
\theta=(2 k+1) \pi
$$

with $k$ any integer.
Example R4.1. Let $z=2+j \sqrt{3}$, we can express it in polar form by calculating its magnitude and angle:

$$
|z|=\sqrt{2^{2}+3}=\sqrt{7}, \quad \theta=\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)
$$

Therefore,

$$
z=2+j \sqrt{3}=\sqrt{7} e^{j \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)} .
$$



Figure R4.1: Representation of a complex number $z$ in Cartesian form and polar form.

The conjugate of a complex number in Cartesian form is obtained by negating the imaginary part:

$$
z^{*}=(x+j y)^{*}=x^{*}+(j y)^{*}=x-j y .
$$

In polar form, the conjugate is obtained by changing the sign of the angle:

$$
z^{*}=\left(r e^{j \theta}\right)^{*}=r e^{-j \theta}
$$

## R4.2 Complex Arithmetic

## (1) Addition and Subtraction

$z_{1}=x_{1}+j y_{1}$ and $z_{2}=x_{2}+j y_{2}$ be two complex numbers. Then

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)
$$

where $\left(x_{1}+x_{2}\right)$ are $\left(y_{1}+y_{2}\right)$ are the real and imaginary parts of the sum $z_{1}+z_{2}$, respectively. Similarly,

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
$$

where $\left(x_{1}-x_{2}\right)$ are $\left(y_{1}-y_{2}\right)$ are the real and imaginary parts of the difference $z_{1}-z_{2}$, respectively.

Example R4.2. Let $z_{1}=1.3+j 5.2$ and $z_{2}=2.7-j 3.6$ then

$$
\begin{aligned}
& z_{1}+z_{2}=(1.3+j 5.2)+(2.7-j 3.6)=4+j 1.6 \\
& z_{1}-z_{2}=(1.3+j 5.2)-(2.7-j 3.6)=-1.4+8.8 j .
\end{aligned}
$$

## (2) Multiplication

Let $z_{1}=x_{1}+j y_{1}$ and $z_{2}=x_{2}+j y_{2}$ then

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left(x_{1}+j y_{1}\right)\left(x_{2}+j y_{2}\right) \\
& =x_{1} x_{2}+j x_{1} y_{2}+j x_{2} y_{1}+j^{2} y_{1} y_{2} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{aligned}
$$

Example R4.3. Let $z_{1}=1+j \sqrt{3}, z_{2}=2-j 2$. The product of $z_{1}, z_{2}$ calculated in polar form is given by

$$
(1+j \sqrt{3})(2-j 2)=2 e^{j \pi / 3} \cdot 2 \sqrt{2} e^{-j \pi / 4}=4 \sqrt{2} e^{j \pi / 12}=5.4641+j 1.4641 .
$$

Calculating in the Cartesian form we get

$$
(1+j \sqrt{3})(2-j 2)=(2+2 \sqrt{3})+j(2 \sqrt{3}-2)=5.4641+j 1.4641 .
$$

## (3) Division

The division of two complex numbers $z_{0}$ and $z_{1}$ can be carried out either in polar form or in Cartesian form. In the former case

$$
w=\frac{z_{0}}{z_{1}}=\frac{r_{0} e^{j \theta_{0}}}{r_{1} e^{j \theta_{1}}}=\frac{r_{0}}{r_{1}} e^{j\left(\theta_{0}-\theta_{1}\right)} .
$$

In the latter case
$w=\frac{z_{0}}{z_{1}}=\frac{x_{0}+j y_{0}}{x_{1}+j y_{1}}=\frac{\left(x_{0}+j y_{0}\right)\left(x_{1}-j y_{1}\right)}{\left(x_{1}+j y_{1}\right)\left(x_{1}-j y_{1}\right)}=\frac{\left(x_{0} x_{1}+y_{0} y_{1}\right)+j\left(x_{1} y_{0}-x_{0} y_{1}\right)}{x_{1}^{2}+y_{1}^{2}}$.

Example R4.4. To divide $2+j 2$ by $1-j$, we calculate in polar form as follows:

$$
\frac{2+j 2}{1-j}=\frac{2 \sqrt{2} e^{j \frac{\pi}{4}}}{\sqrt{2} e^{-j \frac{\pi}{4}}}=2 e^{j\left(\frac{\pi}{4}\right)-\left(-\frac{\pi}{4}\right)}=2 e^{j \frac{\pi}{2}}=j 2
$$

Calculating in the Cartesian form we get

$$
\frac{2+j 2}{1-j}=\frac{(2+j 2)(1+j)}{(1-j)(1+j)}=\frac{(2-2)+j(2+2)}{1^{2}+1^{2}}=j 2 .
$$

## (4) Inverse

The inverse of a complex number is a special case of division where the numerator is 1 . In polar form we have

$$
z^{-1}=\frac{1}{z}=\frac{1}{r e^{j \theta}}=\frac{1}{r} e^{-j \theta} .
$$

Equivalently, in the Cartesian form we have

$$
z^{-1}=\frac{1}{z}=\frac{1}{x+j y}=\frac{x-j y}{(x+j y)(x-j y)}=\frac{x-j y}{x^{2}+y^{2}} .
$$

## R5 Complex Variables

## R5.1 Function of a Complex Variable

A function of the complex variable $z$ can be written as

$$
f(z)=u(z)+j v(z)
$$

where $u(z)$ and $v(z)$ are real functions of $z$. In the Cartesian form, we define $z=x+j y$ for real $x$ and $y$. Therefore, the values of $u(z)$ and $v(z)$ depend on $x$ and $y$, and we can express the complex function $f(z)$ as

$$
f(z)=u(x, y)+j v(x, y) .
$$

If $z=r e^{j \theta}$, then $f(z)$ can be expressed as

$$
f(z)=u(r, \theta)+j v(r, \theta),
$$

where $u(r, \theta)$ and $v(r, \theta)$ are the real and imaginary parts of $f(z)$.

## R5.2 Analytic Function of a Complex Variable

Definition R5.1. A function $f(z)$ is said to be differentiable at a point $z_{0}$ in the $z$-plane if the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

exists. Note that $f\left(z_{0}+\triangle z\right)$ can approach $f\left(z_{0}\right)$ along any path. This limit is called the derivative of $f(z)$ at point $z_{0}$.
Definition R5.2. A function $f(z)$ of a complex variable $z$ is analytic in the region $R$ in the complex $z$-plane if and only if all the derivatives of $f(z)$ exist at all points inside the region $R$.

## R5.3 Analytic Continuation

If the values of a function $f(z)$ of a complex variable are known everywhere on a closed contour $C$ inside a region $R$ where $f(z)$ is analytic, then the values of $f(z)$ at all points in $R$ can be found by mapping from the contour $C$ to any point in $R$.

## R5.4 Cauchy's Integral Formula

If a function $f(z)$ is analytic both on and inside a counterclockwise closed contour $C$ and if $z_{0}$ is any point inside $C$, then

$$
\begin{align*}
f\left(z_{0}\right) & =\frac{1}{2 \pi j} \oint_{C} f(z) \frac{1}{z-z_{0}} d z  \tag{R5.1}\\
f^{\prime}\left(z_{0}\right) & =\frac{1}{2 \pi j} \oint_{C} f(z) \frac{1}{\left(z-z_{0}\right)^{2}} d z  \tag{R5.2}\\
f^{\prime \prime}\left(z_{0}\right) & =\frac{2}{2 \pi j} \oint_{C} f(z) \frac{1}{\left(z-z_{0}\right)^{3}} d z  \tag{R5.3}\\
\vdots &  \tag{R5.4}\\
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi j} \oint_{C} f(z) \frac{1}{\left(z-z_{0}\right)^{n+1}} d z \tag{R5.5}
\end{align*}
$$

where $f^{\prime}\left(z_{0}\right)=\left.\frac{d f(z)}{d z}\right|_{z=z_{0}}, f^{\prime \prime}\left(z_{0}\right)=\left.\frac{d^{2} f(z)}{d z^{2}}\right|_{z=z_{0}}$, and $f^{(n)}\left(z_{0}\right)=\left.\frac{d^{n} f(z)}{d z^{n}}\right|_{z=z_{0}}$.
Eq.(R5.1) is often referred as the Cauchy's integral formula.
By combining Eq.(R5.1) - Eq.(R5.5) we arrive at an useful relation:

$$
\frac{1}{2 \pi j} \oint_{C} z^{k-1} d z= \begin{cases}1 & , k=0  \tag{R5.6}\\ 0 & , k \neq 0\end{cases}
$$

where $C$ is a counterclockwise closed contour encircling $z=0$.

## R5.5 Cauchy's Residue Theorem

If a function $f(z)$ is analytic both on and inside a counterclockwise closed contour $C$ except at poles $z_{k}, k=1,2, \ldots, n$, then

$$
\begin{equation*}
\frac{1}{2 \pi j} \oint_{C} f(z) d z=\sum_{k}\left[\text { residue of } f(z) \text { at pole } z_{k} \text { inside } C\right] \text {. } \tag{R5.7}
\end{equation*}
$$

In the case when $f(z)$ is a rational function of $z$ and has pole at $z=z_{k}$ of multiplicity $m$, we can express $f(z)$ as

$$
f(z)=\frac{\Gamma(z)}{\left(z-z_{k}\right)^{m}},
$$

where $\Gamma(z)$ does not have any pole at $z=z_{k}$. Thus the residue of $f(z)$ at the pole $z_{k}$ inside $C$ is given by

$$
\begin{equation*}
\frac{1}{(m-1)!}\left[\frac{d^{m-1} \Gamma(z)}{d z^{m-1}}\right]_{z=z_{k}} \tag{R5.8}
\end{equation*}
$$

## R6 Continuous-Time Signals

## R6.1 Energy and Power

The total energy of a continuous-time signal $x(t)$ is given by

$$
E_{x}=\lim _{T \rightarrow \infty} \int_{-T}^{T}|x(t)|^{2} d t
$$

The average power of a continuous-time $x(t)$ is given by

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t
$$

The definition of total energy can explained as the area under the squared signal $|x(t)|^{2}$, and it is a measurement of the strength of the signal $x(t)$ over infinite time. However, there are signals with infinite energy so we need to evaluate the average power of the signal $x(t)$ as a measurement of the strength over one unit time.

## R6.2 Continuous-Time Sinusoidal and Exponential Signals

## R6.2.1 Definition

The continuous-time real sinusoidal signal with constant amplitude is of the form

$$
\begin{equation*}
x(t)=A \cos \left(\Omega_{0} t+\phi\right), \tag{R6.1}
\end{equation*}
$$

where $A, \Omega_{0}$ and $\phi$ are real numbers. The parameters $A, \Omega_{0}$ and $\phi$ are called, respectively, the amplitude, the angular frequency, and the phase of the sinusoidal signal $x(t)$.

The complex exponential signal is expressed in the form

$$
\begin{equation*}
x(t)=A \alpha^{t} \tag{R6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=e^{\sigma_{0}+j \Omega_{0}}, A=|A| e^{j \phi} . \tag{R6.3}
\end{equation*}
$$

If $A$ and $\alpha$ are both real, the signal of Eq. (R6.2) reduces to real exponential signal. For $t \geq 0$ such a signal with $|\alpha|<1$ decays exponentially as $t$ increases and with $|\alpha|>1$ grows exponentially as $t$ increases.

In addition, we can rewrite Eq. (R6.2) as

$$
\begin{align*}
x(t) & =A e^{\left(\sigma_{0}+j \Omega_{0}\right) t}=|A| e^{\sigma_{0} t} e^{j\left(\Omega_{0} t+\phi\right)}  \tag{R6.4}\\
& =|A| e^{\sigma_{0} t} \cos \left(\Omega_{0} t+\phi\right)+j|A| e^{\sigma_{0} t} \sin \left(\Omega_{0} t+\phi\right) \tag{R6.5}
\end{align*}
$$

Thus the real and imaginary parts of a complex exponential signal are real sinusoidal signals.

The fundamental period $T_{0}$ of a complex exponential signal (Eq. (R6.4)) with $\sigma_{0}=0$ is defined to be the smallest positive $T_{0}$ satisfying

$$
\begin{equation*}
|A| e^{j\left(\Omega_{0} t+\phi\right)}=|A| e^{j\left(\Omega_{0}\left(t+T_{0}\right)+\phi\right)} \tag{R6.6}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
e^{j \Omega_{0} T_{0}}=1 \tag{R6.7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
T_{0}=\frac{2 \pi}{\left|\Omega_{0}\right|} \tag{R6.8}
\end{equation*}
$$

## R6.2.2 Properties

The properties of continuous-time sinusoidal and exponential signals and comparisons with discrete-time sinusoidal and exponential sequences are discussed as follows.

1. Periodicity for any choice of $\Omega_{0}$

Note that the continuous-time sinusoidal signal $A \cos \left(\Omega_{0} t+\phi\right)$ (Eq. (R6.1)) and the continuous-time complex exponential signal $|A| e^{j\left(\Omega_{0} t+\phi\right)}$ are periodic signals of any choice of $\Omega_{0}$. However, discrete-time sequences are not always periodic with any choice of $\omega_{0}$. Discrete sinusoidal sequence $A \cos \left(\omega_{0} n+\phi\right)$ and discrete complex exponential sequence $|A| e^{j\left(\omega_{0} n+\phi\right)}$ are periodic with period $N$ only if $\omega_{0} N$ is an integer multiple of $2 \pi$, i.e., $\omega_{0} N=2 \pi r$ where $N$ and $r$ are positive integers. For example, $\cos \left(\frac{\pi n}{4}\right)$ is a periodic sequence while $\cos \left(\frac{n}{4}\right)$ is not periodic.
2. Distinctness for different $\Omega_{0}, \Omega_{1}$

Any two continuous-time sinusoidal signals

$$
A \cos \left(\Omega_{0} t+\phi\right), A \cos \left(\Omega_{1} t+\phi\right), \Omega_{0} \neq \Omega_{1}
$$

have different waveforms. Similarly, any two continuous-time exponential signals with $\Omega_{0} \neq \Omega_{1}$ also have different waveforms. Unlike the continuous-time case, discrete-time sinusoidal sequences

$$
A \cos \left(\omega_{0} n+\phi\right), A \cos \left(\omega_{1} n+\phi\right), \omega_{0}=\omega_{1}+2 \pi k
$$

have the same sequence values. Similarly, any two discrete-time exponential sequences with $\omega_{0}=\omega_{1}+2 \pi k$ also have the same sequence values.

## R6.3 Continuous-Time Eigenfunction

If the input signal of any LTI system has output signal being the input signal multiplied by a complex constant, this certain type of input signal is called the eigenfunction and the complex constant is called the eigenvalue.

Example R6.1. We want to show that the complex exponential signal defined in Eq. (R6.2)

$$
x(t)=A \alpha^{t}
$$

is an eigenfunction of an LTI continuous-time system with an impulse response $h(t)$.

By using the convolution integral, we have

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau) A \alpha^{(t-\tau)} d \tau \\
& =\left(\int_{-\infty}^{\infty} h(\tau) \alpha^{-\tau} d \tau\right) A \alpha^{t}
\end{aligned}
$$

Since the integral inside the brackets is independent of $t$, we can therefore say that the input signal $A \alpha^{t}$ is an eigenfunction.
Example R6.2. We want to show that the sum of any two complex exponential signals

$$
x(t)=A \alpha^{t}+B \beta^{t}
$$

is not an eigenfunction of an LTI continuous-time system with an impulse response $h(t)$.

By using the convolution integral, we have

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau)\left(A \alpha^{(t-\tau)}+B \beta^{(t-\tau)}\right) d \tau \\
& =\left(\int_{-\infty}^{\infty} h(\tau) \alpha^{-\tau} d \tau\right) A \alpha^{t}+\left(\int_{-\infty}^{\infty} h(\tau) \beta^{-\tau} d \tau\right) B \beta^{t}
\end{aligned}
$$

Since the input signal $x(t)$ cannot be extracted from the summation above, we can therefore say that the input signal $A \alpha^{t}+B \beta^{t}$ is not an eigenfunction.

## R6.4 Continuous-Time Fourier Series

## R6.4.1 Definition

Given a periodic continuous-time signal $x(t)$ with period $T_{0}$ and fundamental frequency $\Omega_{0}=2 \pi / T_{0}$, the Fourier series expansion of $x(t)$ is given by the linear combination of the set of harmonically related complex exponentials

$$
e^{j k \Omega_{0} t}=e^{j k \frac{2 \pi}{T_{0}} t}, \quad k=0, \pm 1, \pm 2, \ldots
$$

i.e.,

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \frac{2 \pi}{T_{0}} t}  \tag{R6.9}\\
a_{k} & =\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \Omega_{0} t} d t=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \frac{2 \pi}{T_{0}} t} d t \tag{R6.10}
\end{align*}
$$

Note that the notation $\int_{T_{0}}$ denotes the integration over any interval of length $T_{0}$. The Eq.(R6.9) is referred to as the synthesis equation and the Eq.(R6.10) is referred to as the analysis equation. The coefficient $a_{k}$ is called the Fourier series coefficient.

Table R6.1: Properties of Continuous-Time Fourier Series.

| Type of <br> Property | Periodic Signal with <br> frequency $\Omega_{0}=2 \pi / T$ | Fourier Series <br> Coefficients |
| :---: | :---: | :---: |
| Linearity | $g(t)$ | $a_{k}$ |
| $h(t)$ | $b_{k}$ |  |
| Time Shifting | $\alpha g(t)+\beta h(t)$ | $\alpha a_{k}+\beta b_{k}$ |
| Frequency Shifting | $g\left(t-t_{0}\right)$ | $a_{k} e^{-j k \Omega_{0} t_{0}}$ |
| Multiplication | $e^{j M \Omega_{0} t} g(t)$ | $a_{k-M}$ |
| Time Reversal | $g(t) h(t)$ | $\sum_{l=-\infty}^{\infty} a_{l} b_{k-l}$ |
| Conjugation | $g(-t)$ | $a_{-k}$ |
| Time Scaling | $g^{*}(t)$ | $a_{-k}^{*}$ |
| Periodic Convolution | $g(\alpha t), \alpha>0$ | $a_{k}$ |

Example R6.3. Find the Fourier series coefficients of the continuous-time signal

$$
x(t)=1+\cos \left(\Omega_{0} t\right)+2 \cos \left(2 \Omega_{0} t+\frac{\pi}{3}\right)+4 \sin \left(3 \Omega_{0} t-\frac{\pi}{4}\right)
$$

with fundamental frequency $\Omega_{0}$.
By using the Euler's Formula, it can be shown that

$$
\begin{aligned}
x(t) & =1+\frac{1}{2}\left(e^{j \Omega_{0} t}+e^{-j \Omega_{0} t}\right)+\frac{2}{2}\left(e^{j\left(2 \Omega_{0} t+\frac{\pi}{3}\right)}+e^{-j\left(2 \Omega_{0} t+\frac{\pi}{3}\right)}\right)+\frac{4}{2 j}\left(e^{j\left(3 \Omega_{0} t-\frac{\pi}{4}\right)}-e^{-j\left(3 \Omega_{0} t-\frac{\pi}{4}\right)}\right) \\
& =1+\frac{1}{2} e^{j \Omega_{0} t}+\frac{1}{2} e^{-j \Omega_{0} t}+e^{j \frac{\pi}{3}} e^{j 2 \Omega_{0} t}+e^{-j \frac{\pi}{3}} e^{-j 2 \Omega_{0} t}+\frac{2}{j} e^{-j \frac{\pi}{4}} e^{j 3 \Omega_{0} t}-\frac{2}{j} e^{j \frac{\pi}{4}} e^{-j 3 \Omega_{0} t}
\end{aligned}
$$

Therefore, the Fourier series coefficients are

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=\frac{1}{2}, a_{-1}=\frac{1}{2} \\
& a_{2}=e^{j \frac{\pi}{3}}=\frac{1+j \sqrt{3}}{2}, a_{-2}=e^{-j \frac{\pi}{3}}=\frac{1-j \sqrt{3}}{2}, \\
& a_{3}=\frac{2}{j} e^{-j \frac{\pi}{4}}=\sqrt{2}(-1-j), a_{-3}=-\frac{2}{j} e^{j \frac{\pi}{4}}=\sqrt{2}(-1+j), \\
& a_{k}=0,|k|>3 .
\end{aligned}
$$

Example R6.4. Find the Fourier series coefficients of the impulse train

$$
x(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-k T_{0}\right)
$$

with period $T_{0}$.
By calculating Eq.(R6.10) in the interval $-T_{0} / 2 \leq t \leq T_{0} / 2$, we can get

$$
a_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} \delta(t) e^{-j k \frac{2 \pi}{T_{0}} t} d t=\frac{1}{T_{0}} .
$$

Therefore, all the Fourier series coefficients of the impulse train have the same value $1 / T_{0}$.

Some important properties of continuous-time Fourier series are listed in Table R6.1 for quick reference.

## R6.4.2 Dirichlet Conditions

In order to verify the existence of Fourier series representation for a periodic signal $x(t)$, we need to examine the Dirichlet conditions. The Dirichlet conditions are given by:

1. $x(t)$ must be absolutely integrable, i.e.,

$$
\int_{T_{0}}|x(t)| d t<\infty
$$

2. In any finite interval of time, $x(t)$ has a finite number of local maxima and local minima.
3. In any finite interval of time, $x(t)$ has a finite number of discontinuities.

The Dirichlet conditions guarantee that $x(t)$ equals its Fourier series representation

$$
\sum_{k=-\infty}^{\infty} a_{k} e^{j k \Omega_{0} t}
$$

at all values of $t$ except at discontinuities of $x(t)$. Note that Dirichlet conditions are only sufficient but not necessary conditions.

## R6.5 Continuous-Time Fourier Transform

Given an aperiodic continuous-time signal $x(t)$, the continuous-time Fourier transform of $x(t)$ is given by

$$
\begin{array}{r}
X(j \Omega)=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t \\
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega \tag{R6.12}
\end{array}
$$

The transform $X(j \Omega)$ is referred to as the spectrum of $x(t)$ because it provides the information of $x(t)$ when evaluated by complex exponential signals at different frequencies.

Some important properties of continuous-time Fourier transform are listed in Table R6.2 for quick reference.

Table R6.2: Properties of Continuous-Time Fourier Transform.

| Property | Signal | Fourier Transform |
| :---: | :---: | :---: |
|  | $g(t)$ | $G(j \Omega)$ |
| Linearity | $\alpha(t)$ | $H(j \Omega)$ |
| Time Shifting | $g(t)+\beta h(t)$ | $\alpha G(j \Omega)+\beta H(j \Omega)$ |
| Frequency Shifting | $e^{j \Omega_{0} t} g(t)$ | $G(j \Omega) e^{-j \Omega t_{0}}$ |
| Multiplication | $g(t) h(t)$ | $G\left(j\left(\Omega-\Omega_{0}\right)\right)$ |
| Time Reversal | $g(-t)$ | $\frac{1}{2 \pi} G(j \Omega) * H(j \Omega)$ |
| Conjugation | $g^{*}(t)$ | $G(-j \Omega)$ |
| Time Scaling | $g(\alpha t)$ | $G^{*}(-j \Omega)$ |
| Convolution | $g(t) * h(t)$ | $\frac{1}{\|\alpha\|} G\left(\frac{j \Omega}{\alpha}\right)$ |
| Differentiation in Time | $\frac{d}{d t} g(t)$ | $G(j \Omega) H(j \Omega)$ |
| Integration | $\int_{-\infty}^{t} g(\tau) d \tau$ | $j \Omega G(j \Omega)$ |
| Real and Even in Time | $g(t)$ real and even | $\frac{1}{j \Omega} G(j \Omega)+\pi G(0) \delta(\Omega)$ |
| Real and Odd in Time | $g(t)$ real and odd | $G(j \Omega)$ real and even |

## R7 Discrete Fourier Series

Given a periodic sequence $x[n]$ with period $N$, the fundamental period is defined to be the smallest integer $N$ such that $x[n]=x[n+N]$ is satisfied, and the fundamental frequency is defined to be $\omega_{0}=2 \pi / N$. The harmonics are sequences whose frequencies are integer multiples of the fundamental frequency. For discrete complex exponential signals, the $k-$ th harmonic is expressed as

$$
e^{j k \omega_{0} n}=e^{j k \frac{2 \pi}{N} n}, k=0, \pm 1, \pm 2, \cdots
$$

Note that there are only $N$ distinct harmonics for discrete complex exponential signals with fundamental frequency $\omega_{0}=2 \pi / N$ because every two signals with frequencies which differ in $2 \pi m$ have the same waveform, i.e,

$$
e^{j k\left(\omega_{0}+2 m \pi\right) n}=e^{j k\left(\frac{2 \pi}{N}+2 m \pi\right) n}=e^{j k\left(\frac{2 \pi}{N}\right) n} \cdot e^{j k 2 m n \pi}=e^{j k\left(\frac{2 \pi}{N}\right) n} .
$$

The discrete Fourier series expansion of periodic signal $x[n]$ is the expression in form of a linearly weighted combination of a fundamental and a series of harmonic complex exponential signals.

$$
x[n]=\sum_{k=0}^{N-1} a_{k} e^{j k \omega_{0} n}=\sum_{k=0}^{N-1} a_{k} e^{j k \frac{2 \pi}{N} n},
$$

where

$$
a_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \omega_{0} n}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k \frac{2 \pi}{N} n} .
$$

Example R7.1. Calculate the Fourier series coefficients $a_{k}$ for the following periodic signal

$$
\{x[n]\}=\{\ldots, 1,1,1,1,0,0, \ldots\}
$$

We can observe that $N=6$ so

$$
\begin{aligned}
a_{k} & =\frac{1}{6} \sum_{n=0}^{5} x[n] e^{-j k\left(\frac{2 \pi}{6}\right) 6} \\
& =\frac{1}{6}\left(e^{-j k\left(\frac{2 \pi}{6}\right) 0}+e^{-j k\left(\frac{2 \pi}{6}\right) 1}+e^{-j k\left(\frac{2 \pi}{6}\right) 2}+e^{-j k\left(\frac{2 \pi}{6}\right) 3}+0+0\right) \\
& =\frac{1}{6}\left(1+e^{-j k \frac{\pi}{3}}+e^{-j k \frac{2 \pi}{3}}+e^{-j k \pi}\right) \\
& =\frac{1}{6}\left(1+e^{-j k \frac{\pi}{3}}+(-1)^{k} e^{j k \frac{\pi}{3}}+(-1)^{k}\right) .
\end{aligned}
$$

Example R7.2. Calculate signal $x[n]$ from the following Fourier series coefficients $a_{k}$

$$
\begin{aligned}
\left\{a_{k}\right\}=\{\ldots, 1 / 4,1 / 2 & , 1,1 / 2,1 / 4,0,1 / 4,1 / 2,1,1 / 2 \ldots\} . \\
& \uparrow .
\end{aligned}
$$

We can observe that $N=6$ so

$$
\begin{aligned}
x[n] & =\sum_{k=<N>} a_{k} e^{j k \frac{2 \pi}{6} n}=1+\frac{1}{2} e^{j \frac{2 \pi}{6} n}+\frac{1}{4} e^{j \frac{2 \pi}{6} 2 n}+0+\frac{1}{4} e^{j \frac{2 \pi}{6} 4 n}+\frac{1}{2} e^{j \frac{2 \pi}{6} 5 n} \\
& =1+\frac{1}{2} e^{j \frac{\pi n}{3}}+\frac{1}{4} e^{j \frac{2 \pi n}{3}}+0+\frac{1}{4} e^{j \frac{4 \pi n}{3}}+\frac{1}{2} e^{j \frac{5 \pi n}{3}} \\
& =1+\frac{1}{2} e^{j \frac{\pi n}{3}}+\frac{1}{4} e^{j \frac{2 \pi n}{3}}+0+\frac{1}{4} e^{j\left(2 \pi n-\frac{2 \pi n}{3}\right)}+\frac{1}{2} e^{j\left(2 \pi n-\frac{\pi n}{3}\right)} \\
& =1+\frac{1}{2} e^{j \frac{\pi n}{3}}+\frac{1}{4} e^{j \frac{2 \pi n}{3}}+0+\frac{1}{4} e^{-j \frac{2 \pi n}{3}}+\frac{1}{2} e^{-j \frac{\pi n}{3}} \\
& =1+\cos \left(\frac{\pi n}{3}\right)+\frac{1}{2} \cos \left(\frac{2 \pi n}{3}\right) .
\end{aligned}
$$

## R8 Matrix Algebra

## R8.1 Definition

A matrix is a rectangular array of real or complex numbers enclosed in brackets; for instance,

$$
\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right],\left[\begin{array}{ccc}
3 & 5 & 6 \\
2 & 1 & -3
\end{array}\right],\left[\begin{array}{cc}
3 j & 5 \\
2-4 j & 1+j \\
7 & 5-3 j
\end{array}\right]
$$

A matrix with $K$ rows and $M$ columns is called a $K \times M$ matrix. For example, the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is a $3 \times 3$ matrix. The matrix

$$
\left[\begin{array}{cc}
1 & 4 \\
2 & 6 \\
-3 j & 1 \\
1+j & 1
\end{array}\right]
$$

is a $4 \times 2$ matrix. The matrix

$$
\mathbf{U}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 M}  \tag{R8.1}\\
a_{21} & a_{22} & \cdots & a_{2 M} \\
\vdots & \vdots & \ddots & \vdots \\
a_{K 1} & a_{K 2} & \cdots & a_{K M}
\end{array}\right]
$$

is a $K \times M$ matrix and the number $a_{r s}, r=1,2, \ldots, K$, and $s=1,2, \ldots, M$ is called the entry of $\mathbf{U}$.

## R8.2 Transpose

The transpose, $\mathbf{U}^{T}$, of a $K \times M$ matrix $\mathbf{U}$ is the $M \times K$ matrix formed by interchanging the rows and columns of $\mathbf{U}$. For example, the transpose of the
matrix $\mathbf{U}$ given in Eq.(R8.1) is a $M \times K$ matrix given by

$$
\mathbf{U}^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{K 1}  \tag{R8.2}\\
a_{12} & a_{22} & \cdots & a_{K 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 M} & a_{2 M} & \cdots & a_{K M}
\end{array}\right]
$$

## R8.3 Toeplitz Matrix

The $N \times N$ matrix $\mathbf{U}$ is a Toeplitz matrix if all entries along the line parallel to the main diagonal are the same. For example,

$$
\mathbf{U}=\left[\begin{array}{cccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} \\
a_{1} & a_{0} & a_{-1} & a_{-2} \\
a_{2} & a_{1} & a_{0} & a_{-1} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right]
$$

is a $4 \times 4$ Toeplitz matrix.

## R8.4 Circulant Matrix

The $N \times N$ matrix $\mathbf{U}$ is a circulant matrix if each row equals the right circular shift of the previous row by one entry. For example,

$$
\mathbf{U}=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
a_{3} & a_{0} & a_{1} & a_{2} \\
a_{2} & a_{3} & a_{0} & a_{1} \\
a_{1} & a_{2} & a_{3} & a_{0}
\end{array}\right]
$$

is a $4 \times 4$ Circulant matrix.

## R8.5 Determinant

If the $2 \times 2$ matrix $\mathbf{U}$ is

$$
\mathbf{U}=\left[\begin{array}{ll}
a_{11} & a_{12}  \tag{R8.3}\\
a_{21} & a_{22}
\end{array}\right]
$$

then the determinant of the $\mathbf{U}$ is given by

$$
\begin{equation*}
\operatorname{det}(\mathbf{U})=a_{11} a_{22}-a_{12} a_{21} \tag{R8.4}
\end{equation*}
$$

Example R8.1. The determinant of the matrix

$$
\mathbf{U}=\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]
$$

is $\operatorname{det}(\mathbf{U})=3 \cdot 2-4 \cdot 1=6-4=2$.
If the $3 \times 3$ matrix $\mathbf{U}$ is

$$
\mathbf{U}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}  \tag{R8.5}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

then the determinant of $\mathbf{U}$ is given by

$$
\begin{equation*}
\operatorname{det}(\mathbf{U})=a_{11} a_{22} a_{33}+a_{21} a_{32} a_{13}+a_{12} a_{23} a_{31}-a_{13} a_{22} a_{31}-a_{11} a_{32} a_{23}-a_{12} a_{21} a_{33} \tag{R8.6}
\end{equation*}
$$

Example R8.2. The determinant of the matrix

$$
\left[\begin{array}{ccc}
1 & 4 & -6 \\
2 & 1 & 3 \\
4 & 5 & -2
\end{array}\right]
$$

is

$$
\begin{aligned}
\operatorname{det}(\mathbf{U}) & =1 \cdot 1 \cdot(-2)+2 \cdot 5 \cdot(-6)+4 \cdot 3 \cdot 4-(-6) \cdot 1 \cdot 4-1 \cdot 5 \cdot 3-4 \cdot 2 \cdot(-2) \\
& =(-2)+(-60)+48-(-24)-15-(-16)=11 .
\end{aligned}
$$

If the $N \times N$ matrix $\mathbf{U}$ is

$$
\mathbf{U}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N}  \tag{R8.7}\\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right]
$$

then the determinant of $\mathbf{U}$ is

$$
\begin{aligned}
\operatorname{det}(\mathbf{U}) & =a_{r 1}(-1)^{r+1} M_{r 1}+a_{r 2}(-1)^{r+2} M_{r 2}+\cdots+a_{r N}(-1)^{r+N} M_{r N} \quad \text { (R8.8) } \\
& =a_{1 s}(-1)^{1+s} M_{1 s}+a_{2 s}(-1)^{2+s} M_{2 s}+\cdots+a_{N s}(-1)^{N+s} M_{N s} \quad \text { (R8.9) }
\end{aligned}
$$

where $r, s=1$ or 2 or $3 \cdots$, or $N$ and $M_{r s}$ is the minor of $a_{r s}$ (see Section R8.6).

Example R8.3. To calculate the determinant of the matrix

$$
\mathbf{U}=\left[\begin{array}{cccc}
1 & 6 & -4 & 6  \tag{R8.10}\\
-7 & 1 & 3 & -6 \\
2 & -3 & 6 & 5 \\
-2 & 4 & 2 & 6
\end{array}\right]
$$

we first calculate the minors

$$
\begin{aligned}
& M_{11}=\left[\begin{array}{ccc}
1 & 3 & -6 \\
-3 & 6 & 5 \\
4 & 2 & 6
\end{array}\right]=320, M_{12}=\left[\begin{array}{ccc}
-7 & 3 & -6 \\
2 & 6 & 5 \\
-2 & 2 & 6
\end{array}\right]=-344 \\
& M_{13}=\left[\begin{array}{ccc}
-7 & 1 & -6 \\
2 & -3 & 5 \\
-2 & 4 & 6
\end{array}\right]=232, M_{14}=\left[\begin{array}{ccc}
-7 & 1 & 3 \\
2 & -3 & 6 \\
-2 & 4 & 2
\end{array}\right]=200 .
\end{aligned}
$$

The determinant is therefore given by

$$
\begin{aligned}
\operatorname{det}(\mathbf{U}) & =1 \cdot(-1)^{1+1} \cdot 320+6 \cdot(-1)^{1+2} \cdot(-344)+(-4) \cdot(-1)^{1+3} \cdot 232+6 \cdot(-1)^{1+4} \cdot 200 \\
& =320+2064-928-1200=256
\end{aligned}
$$

## R8.6 Minor and Cofactor

From $\mathbf{U}$ given in Eq.(R8.7), the minor $M_{r s}$ of $a_{r s}$ in $\mathbf{U}$ is defined to be the determinant of the $(N-1) \times(N-1)$ matrix formed by deleting the $r$-th row and $s$-th column of $\mathbf{U}$. For example,

$$
M_{11}=\left|\begin{array}{cccc}
a_{22} & a_{23} & \cdots & a_{2 N} \\
a_{32} & a_{33} & \cdots & a_{3 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{N 2} & a_{N 3} & \cdots & a_{N N}
\end{array}\right|, M_{12}=\left|\begin{array}{cccc}
a_{21} & a_{23} & \cdots & a_{2 N} \\
a_{31} & a_{33} & \cdots & a_{3 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{N 1} & a_{N 3} & \cdots & a_{N N}
\end{array}\right| .
$$

The cofactor $C_{r s}$ of $a_{r s}$ in $\mathbf{U}$ given in Eq.(R8.7) is defined to be

$$
\begin{equation*}
C_{r s}=(-1)^{r+s} M_{r s} \tag{R8.11}
\end{equation*}
$$

## R8.7 Inverse of a Matrix

By Eq.(R8.7), if $\operatorname{det}(\mathbf{U}) \neq 0$, then the inverse of $\mathbf{U}$ exists and is uniquely given by

$$
\mathbf{U}^{-1}=\frac{1}{\operatorname{det}(\mathbf{U})}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{N 1}  \tag{R8.12}\\
C_{12} & C_{22} & \cdots & C_{N 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 N} & C_{2 N} & \cdots & C_{N N}
\end{array}\right]
$$

where $C_{r s}=(-1)^{r+s} M_{r s}$ is the cofactor of $a_{r s}$ in $\mathbf{U}$ given in Eq.(R8.7).
Example R8.4. In this example we want to find the inverse of the matrix given in Eq.(R8.10). The cofactors are calculated as follows:

$$
\begin{array}{ll}
C_{11}=(-1)^{1+1} M_{11}=320, & C_{12}=(-1)^{1+2} M_{12}=344, \\
C_{13}=(-1)^{1+3} M_{13}=232, & C_{14}=(-1)^{1+4} M_{14}=-200 \\
C_{21}=(-1)^{2+1} M_{21}=176, & C_{22}=(-1)^{2+2} M_{22}=210, \\
C_{23}=(-1)^{2+3} M_{23}=158, & C_{24}=(-1)^{2+4} M_{24}=-134 \\
C_{31}=(-1)^{3+1} M_{31}=240, & C_{32}=(-1)^{3+2} M_{32}=234, \\
C_{33}=(-1)^{3+3} M_{33}=198, & C_{34}=(-1)^{3+4} M_{24}=-142 \\
C_{41}=(-1)^{4+1} M_{41}=-344, & C_{42}=(-1)^{4+2} M_{42}=-329, \\
C_{43}=(-1)^{4+3} M_{43}=-239, & C_{44}=(-1)^{4+4} M_{44}=227 .
\end{array}
$$

Therefore, the inverse is

$$
\mathbf{U}^{-1}=\frac{1}{256}\left[\begin{array}{cccc}
320 & 176 & 240 & -344 \\
344 & 210 & 234 & -329 \\
232 & 158 & 198 & -239 \\
-200 & -134 & -142 & 227
\end{array}\right]
$$

## R8.8 Unitary Matrix and Orthogonal Matrix

The $N \times N$ matrix $\mathbf{U}$ is said to be unitary if

$$
\begin{equation*}
\mathbf{U}^{H} \mathbf{U}=\mathbf{U}^{H}=k I, \tag{R8.13}
\end{equation*}
$$

where $k$ is any nonzero constant and $\mathbf{U}^{H}=\left(\mathbf{U}^{T}\right)^{*}$ is the conjugate-transpose of $\mathbf{U}$. Note that the unitary matrix is always invertible and $\mathbf{U}^{H}=\mathbf{U}^{-1}$.

A real unitary matrix $\mathbf{U}$ is also called an orthogonal matrix, i.e.,

$$
\begin{equation*}
\mathbf{U}^{T} \mathbf{U}=\mathbf{U} \mathbf{U}^{T}=k I, \tag{R8.14}
\end{equation*}
$$

where $k$ is any nonzero constant and $\mathbf{U}^{T}$ is the transpose of $\mathbf{U}$. Similarly, the orthogonal matrix is always invertible and $\mathbf{U}^{H}=\mathbf{U}^{-1}$. If $k=1$, then the matrix $\mathbf{U}$ is said to be orthonormal.

## R8.9 Cramer's Rule

Consider the set of $N$ linear equations

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots \cdots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots \cdots+a_{2 N} x_{N}=b_{2} \\
\vdots  \tag{R8.15}\\
a_{N 1} x_{1}+a_{N 2} x_{2}+\cdots \cdots+a_{N N} x_{N}=b_{N}
\end{gather*}
$$

writing in matrix form yields

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N}  \tag{R8.16}\\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{N}
\end{array}\right] .
$$

Let $D$ be the determinant of the coefficient matrix

$$
D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N}  \tag{R8.17}\\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right| .
$$

If $D \neq 0$, then the system(R8.15) has the unique solution

$$
\begin{equation*}
x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \cdots, x_{N}=\frac{D_{N}}{D} \tag{R8.18}
\end{equation*}
$$

where

$$
D_{1}=\left|\begin{array}{cccc}
b_{1} & a_{12} & \cdots & a_{1 N} \\
b_{2} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
b_{N} & a_{N 2} & \cdots & a_{N N}
\end{array}\right|, D_{2}=\left|\begin{array}{cccc}
a_{11} & b_{1} & \cdots & a_{1 N} \\
a_{21} & b_{2} & \cdots & a_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{N 1} & b_{N} & \cdots & a_{N N}
\end{array}\right|, \cdots, \text { etc. }
$$


[^0]:    ${ }^{1}$ For test of the convergence of infinite sums, a recommended reading is Table of Integrals, Series, and Products, I.S. Gradshteyn and I.M. Ryzhik, © 2000 , Academic Press.

