EEG373 (Communication systems II), By: Dr. Mohab Mangoud

Assignment (1)

Due Monday 15 March

Question (1)

Classify the following signals as energy signals or power signals. Find the normalized energy or normalized power of each.

(a)
$$x(t) = A \cos 2\pi f_0 t$$
 for $-\infty < t < \infty$

(b)
$$x(t) = \begin{cases} A\cos 2\pi f_0 t & \text{for } -T_0/2 \le t \le T_0/2 \text{, where } T_0 = 1/f_0 \\ 0 & \text{elsewhere} \end{cases}$$

(c)
$$x(t) = \begin{cases} A \exp(-at) & \text{for } t > 0, a > 0 \\ 0 & \text{elsewhere} \end{cases}$$

(d)
$$x(t) = \cos t + 5 \cos 2t$$
 for $-\infty < t < \infty$

Question (2)

Determine which, if any, of the following functions have the properties of autocorrelation functions. Justify your determination. [Note: $\mathcal{F}\{R(\tau)\}$ must be a nonnegative function. Why?]

(a)
$$x(\tau) = \begin{cases} 1 & \text{for } -1 \le \tau \le 1 \\ 0 & \text{otherwise} \end{cases}$$

(b)
$$x(\tau) = \delta(\tau) + \sin 2\pi f_0 \tau$$

(c)
$$x(\tau) = \exp(|\tau|)$$

(d)
$$x(\tau) = 1 - |\tau|$$
 for $-1 \le \tau \le 1$, 0 elsewhere

Question (3)

Using time averaging, find the average normalized power in the waveform $x(t) = 10 \cos 10t + 20 \cos 20t$.

Repeat Problem 1.4 using the summation of spectral coefficients.

Question (4)

Determine which, if any, of the following functions have the properties of power spectral density functions. Justify your determination.

(a)
$$X(f) = \delta(f) + \cos^2 2\pi f$$

(b)
$$X(f) = 10 + \delta(f - 10)$$

(c)
$$X(f) = \exp(-2\pi |f - 10|)$$

(d)
$$X(f) = \exp[-2\pi(f^2 - 10)]$$

Question (5)

Use the sampling property of the unit impulse function to evaluate the following integrals.

(a)
$$\int_{-\infty}^{\infty} \cos 6t \delta(t-3) dt$$

(b)
$$\int_{-\infty}^{\infty} 10\delta(t)(1+t)^{-1} dt$$

(c)
$$\int_{-\infty}^{\infty} \delta(t+4)(t^2+6t+1) dt$$

(d)
$$\int_{-\infty}^{\infty} \exp(-t^2)\delta(t-2) dt$$

Question (6)

Find $X_1(f) * X_2(f)$ for the spectra shown in Figure P1.1.

Question (7)

The two-sided power spectral density, $G_x(f) = 10^{-6} f^2$, of a waveform x(t) is shown in Figure P1.2.

Figure P1.2

- (a) Find the normalized average power in x(t) over the frequency band from 0 to $10 \,\mathrm{kHz}$
- (b) Find the normalized average power contained in the frequency band from 5 to 6 kHz.

Question (8)

$$G_{x}(f) = 10^{-4} \left\{ \frac{\sin\left[\pi(f - 10^{6})10^{-4}\right]}{\pi(f - 10^{6})10^{-4}} \right\}^{2}$$

find the value of the signal bandwidth using the following bandwidth definitions:

- (a) Half-power bandwidth.
- (b) Noise equivalent bandwidth.
- (c) Null-to-null bandwidth.
- (d) 99% of power bandwidth. (Hint: Use numerical methods.)
- (e) Bandwidth beyond which the attenuation is 35 dB.
- (f) Absolute bandwidth.

Question (9)

(1) A signal s(t) having power spectral density $\Phi_s(f) = 5\Pi \left| \frac{J}{10,000} \right|$ is passed through a channel in which additive white Gaussian noise n(t) and interference i(t) are present, resulting in a received signal of r(t) = s(t) + i(t). You may assume that the signal, noise and interference are all independent and that the noise has power spectral density $\Phi_n(f) = 0.1$, and the interference has power spectral density $\Phi_i(f) = 100\Lambda \left(\frac{f - 2000}{100}\right) + 100\Lambda \left(\frac{f + 2000}{100}\right)$.

The received signal is then filtered twice, first to bandlimit the signal and then to excise the interference, according to the following block diagram:

$$r(t) = s(t) + \underline{n(t) + i(t)}$$

$$H_1(f) = \Pi\left(\frac{f}{10,000}\right)$$

$$y(t)$$

$$H_2(f) = \Pi\left(\frac{f}{3800}\right) + \Pi\left(\frac{f - 3550}{2900}\right)$$

$$+\Pi\left(\frac{f + 3550}{2900}\right)$$

- (a) Find the Signal to Interference and Noise Ratio (SINR) of r(t)
- **(b)** Find the SINR of y(t).
- (c) Find the SINR of z(t).