

Mobile Communications EENG473

Dr. Mohab Abd-Alhameed Mangoud

Associate Professor of Wireless Communications

<u>University of Bahrain</u>, College of Engineering, Department of Electrical and Electronics Engineering, <u>http://mangoud.com</u>

Wireless Hotspot

Instructor

- Course Description
- Lecture Schedule
- Exams, Homework and Project
- □ Grading
- General Policies

Course Description

The cellular concept, Propagation modeling, frequency planning, Link control,Handoffs, Power Control, Traffic capacity, wireless networking, Examples of current mobile systems standards.

<u>Course outline</u>

- Overview
- Fundamentals of cellular systems: Basic building blocks, the cellular concept, handovers, power control, traffic engineering.
- Propagation aspects: large-scale effects
- small-scale effects, propagation models.
- Mitigation Techniques: Equalization, diversity
- Multiple access techniques: FDMA, TDMA, CDMA.
- ✤ Wireless standards and systems GSM, UMTS, 5G

Textbook

T. S. Rappaport, *Wireless Communications: Principles and Practice*, (Second Edition), Prentice Hall, 2002.

Is there a future for wireless? *Some history*

•Ancient Systems: Smoke Signals, Carrier Pigeons, ...

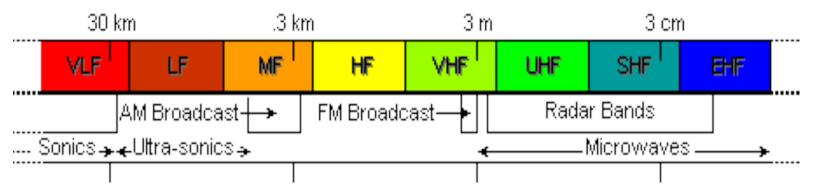
•1861: Maxwell at king's college in London proposed mathematical theory of EM waves.

- 1887: Hertz demonstrated the existence of EM waves using standing waves.
- 1895-1898: Marconi u.o. Bologna built radio telegraph, his signal bridged the English channel 52km wide
- 1921: first analog land mobile by Detroit police department for police car dispatch. (two way radio voice, paging, dispatch).
- 1933: FM was invented which made possible high quality radio communications
- 1946: Bell systems began personal services operated at 150 MHz with speech channels 120 KHz apart.

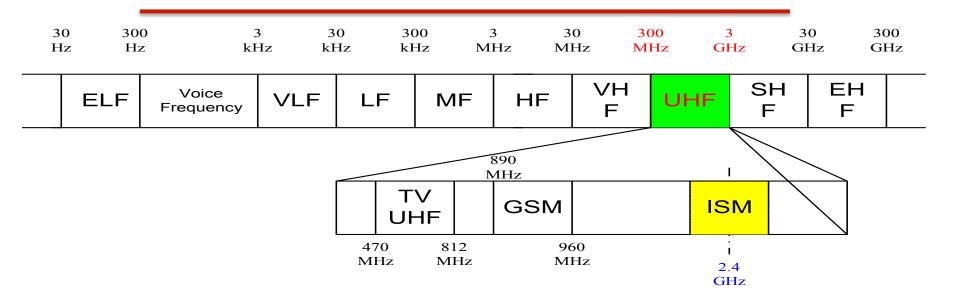
•1947: IMTS improved mobile telephone service using FM was developed by AT&T. the first mobile system connected to PSTN Bell labs. (extending number of users in cellular concept, cellularization) during and after ww2

•1970's: AT&T proposed the first high capacity analog cellular telephone system called (AMPS) Advanced Mobile Phone Service. 1980's: the Total Access Communication System (TACS) in Europe, and the Japanese (JTACS) in Japan was developed

• late 1990's: Cellular has enjoyed exponential growth since 1988, with over 200 million users worldwide todayGSM Europe and IS-136 (TDMA) USA and CDMA(IS95) USA. (SIM, lightweight, low power, clarity of digital voice)


•The demand for higher spectral efficiency and data rates has led to the development of the so called 3rd Generation wireless technology. 3G standardization failed o achieve single common world wide standard and now offers UTRA (WCDMA) and CDMA2000 as the primary standards. By: Dr.Mohab Mangoud

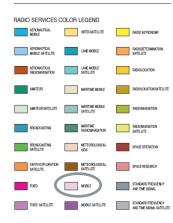
Background and Radio Frequency Spectrum Issues


Spectrum Regulations

- Spectral Allocation in US controlled by FCC (commercial) or OSM (defense) In Europe, ETSI
- FCC auctions spectral blocks for set applications.
- Some spectrum set aside for universal use
- □ Worldwide spectrum controlled by ITU-R (International

Telecommunication Union Radio communication Sector)

Spectrum Allocation

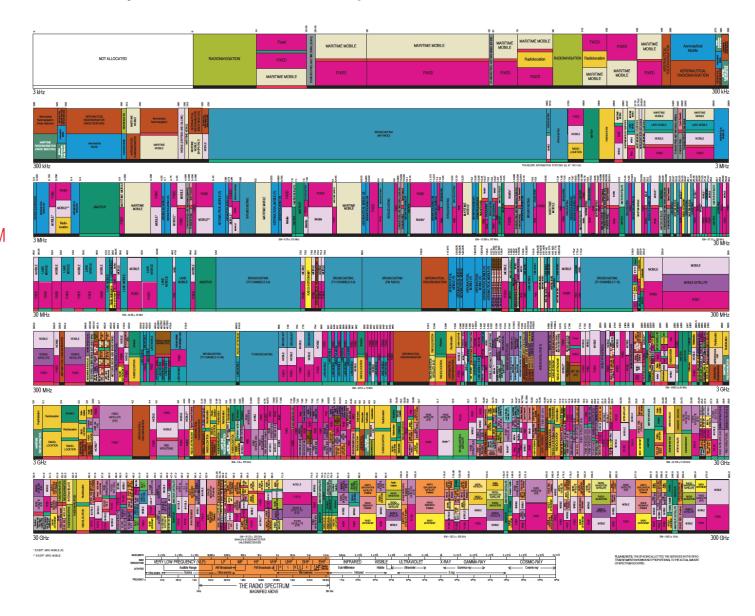

Note: The **Industrial, Scientific and Medical (ISM)** radio bands were originally reserved internationally for non-commercial use of RF electromagnetic fields for industrial, scientific and medical purposes.

Bluetooth and IEEE 802.11b : 2.45 GHz band (wavelength =12.2 cm)

-Standard for **5.2 GHz** NII band (300 MHz) -**Unlicensed National Information Infrastructure (U-NII) band , USA**

Very Crowded RF spectrum

UNITED **STATES** FREQUENCY **ALLOCATIONS** THE RADIO SPECTRUM


ALLOCATION USAGE DESIGNATION DESCRIPTION Capital Letter

Le, tooholee and

ÍΠΛ October 2003

1st Capital with lower case letter

					EAF	DADCA TELLITE RTH EX TELLITE	e Plof		N			Al M S/	ETEORO IDS ETEORO ATELLITE	LOGI		[SPACE SPACE	ERES	SEAR	СН										
1660	1660.5	1000.1	0/01	16/01 1700		1/10	1/ 33		ED SA	/		2110		2180	_	IOBILE SA		2305 2310 Ⅲ	2320	2345	2360	AND T STANI AND T	IME S) FRE	al Quei Al Sa	NCY TELL	ų	2500	2655 2600	2700		2900
MOBILE SAT. (E-S)	SPACE RESEARCH (Passive)	METEOROLOGICAL AIDS (RADIOSONDE)	FIXED	METEOROLOGICAL AIDS (Radiosonde)	Fixed	MOBILE	MOBILE	MOBILE	ELLITE (E-S)	MOBILE	SPACE OP. MOB. FX. (E-S)(s-s)	MOBILE	FIXED	MOBILE	ELLITE (S-E)	CH OPERATION EXPLORATION (9-E)(s-s) SAT (s-E)(s-s)	ED MOBILE**	mateur N MOBILE** FIXED	MOB HA R-LOU BSAT		MOB FX R-LOC. B-SAT	CATION Fixed	FIXED	TEUR	AMATEUR	Amateur	MOBILE Radiolocation	MOBILE SATELLITE (S-E)	FX-SAT (S-E) FIXED	EARTH EXF	DLOGCAL Radiolocation	Radiolocation
RADIO ASTRONOMY	RADIO ASTRONOMY	RADIO ASTRONOMY	WOBILE**	METEOROLOGICAL SATELLITE (s-E)	MET. SAT. (s-E)	FIXED	FIXED	FIXED	MOBILE SATELLITE (E-S)	FIXED	SPACE RES EARTH EXP. (E-S)(5-S) SAT (ES)(5-S)	FIXED	E	FIXED	MOBILE SATELLITE (S-E)	FIXED MOBILE RESEARCH (LOS) (S-E)(S-S)	SPACE RES. (S-E) FIX		tion Mobile Fixed		Radiolocation Mobile Fixed	MOBILE RADIOLOCATION	MOBILE	AMAT	AMA	Radiolocation	FIXED MOR	DETERMINA	BCST - SAT. MOBILE** E-Expl Sat Radio Ast Space re	RADIO ASTRON. SPACE RE	AFFONAUTICAL REDIONAVIGATION REDIONAVIGATION	

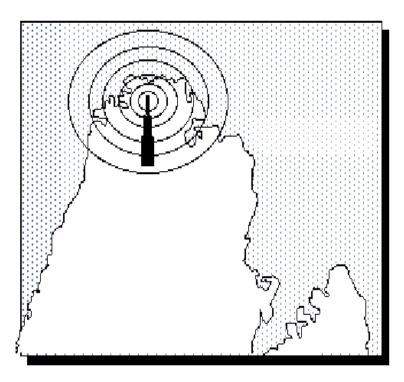
ISM - 2450.0 ± 50 MHz

1Hz

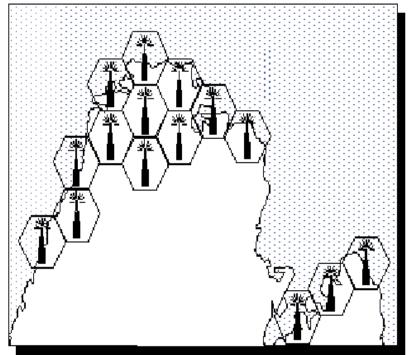
3 GHz

TABLE 1.1 Frequency Band Designations

Frequency range,	GHz	Band designation
0.1-0.3		VHF
0.3 - 1.0		UHF
1.0-2.0		L
2.0-4.0		S
4.0-8.0		C
8.0-12.0		X
12.0 - 18.0		Ku
18.0 - 27.0		K
27.0-40.0		Ka
40.0-75		CerV metric wa
75-110		W
110-300		mm
300 - 3000		μm

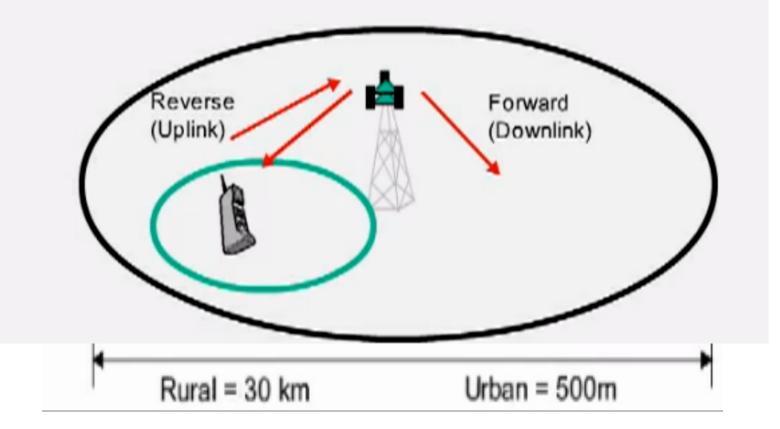

Cellular mobile phone networks basics

Cellular Network Fundamentals

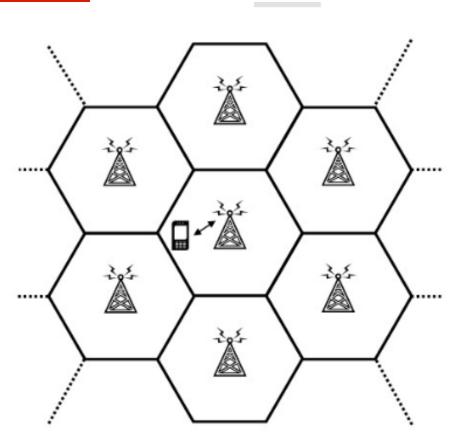

Rank ≑	Country or region \$	Number of mobile phones	Population \$	% of population ◆	Last updated date 🔶
	World	Over 6.6 billion	7,012,000,000 ^[1]	79.86	2011 ^[2]
1	China China	1,010,000,000	1,341,000,000 ^[3]	75.32	March 2012 ^{[4][5][6]}
2	💶 India	919,170,000	1,210,193,422 ^[7]	76.00	Mar 2012 ^[8]
3	United States	327,577,529	310,866,000 ^[9]	103.9	June 2011 ^[10]
4	📀 Brazil	250,800,000	192,379,287 [11]	130.36	April 2012 ^[12]
5	Indonesia	250,100,000	237,556,363	105.28	May 2009 ^[13]
6	Russia	224,260,000	142,905,200 ^[14]	154.5	July 2011 ^[15]
7	Iapan	121,246,700	127,628,095	95.1	June 2011 ^[16]
8	c Pakistan	114,610,000	178,854,781 ^[17]	66.5	Jan 2012 ^{[18] [19]}
9	Germany	107,000,000	81,882,342	130.1	2009 ^[20]
10	Nigeria	90,583,306	140,000,000	64.7	Feb. 2011 ^[21]

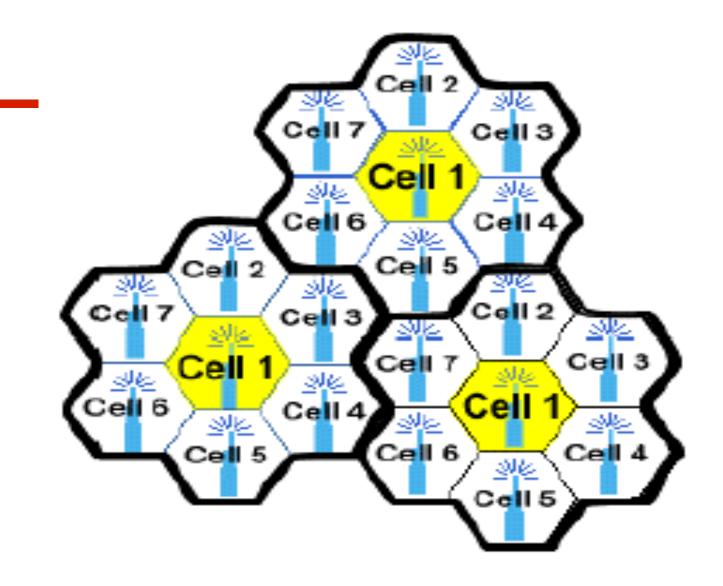
Cellular Telephone Systems

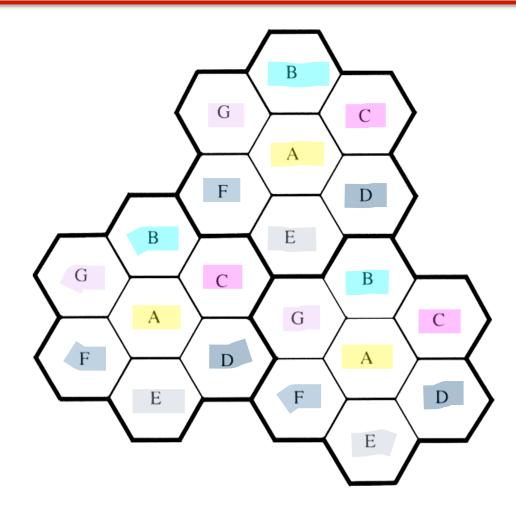
Early Mobile Telephone System Architecture


Mobile Telephone System Using Cellular Architecture

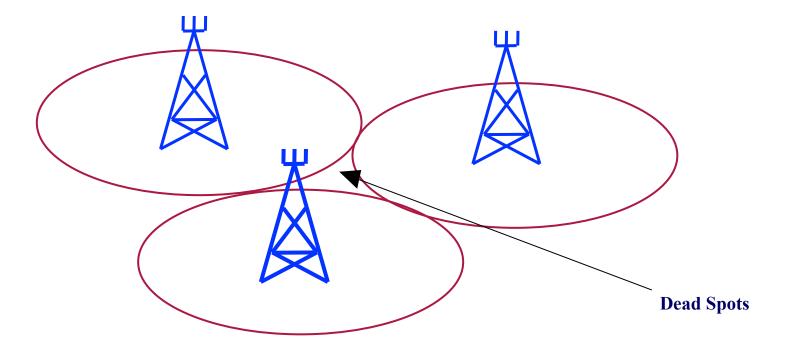
The Base Station (BTS)


Mobile Power = 0.5W

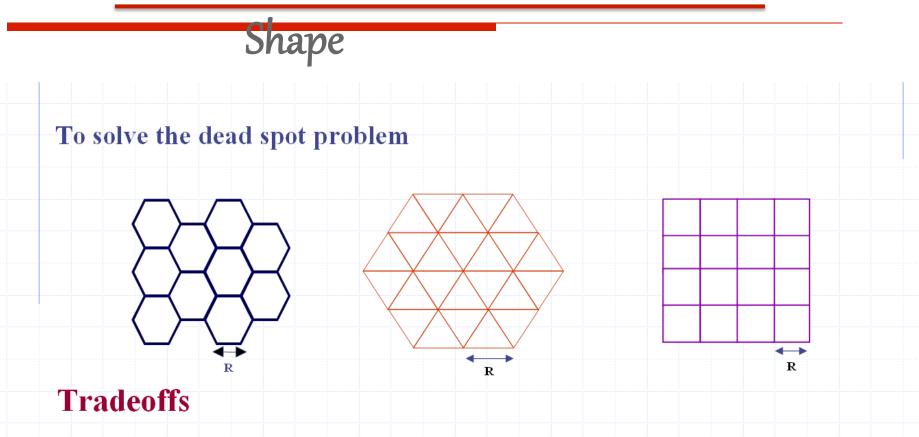

Base Station Power = 10 - 100W


Cellular Wireless System

- A large geographical region is segmented into smaller "cell"s.
 - Transmit power limitation
 - Facilitates frequency spectrum re-use
- Cellular network design issues
 - Inter-cell synchronization
 - Handoff mechanism
 - Frequency planning

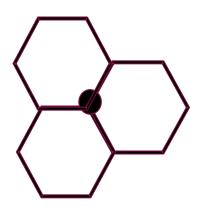


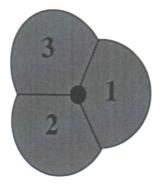
The Cellular Concept



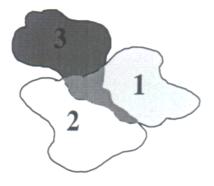
Cell Geometry, Radio Coverage

Problem of omni directional antennas


Cell Geometrical

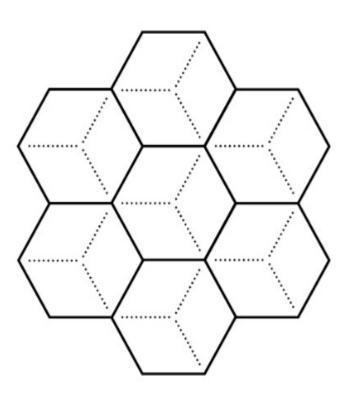


• The number of cells required to cover a given area.


• The cell transceiver power.

Sectorial Antenna

Theoretical


Actual

Sectorial Antenna

The cells will take the form of overlapping circles.

Due to the obstacles in the coverage area the actual shape of the cells would be Random.

• Sectorized cells

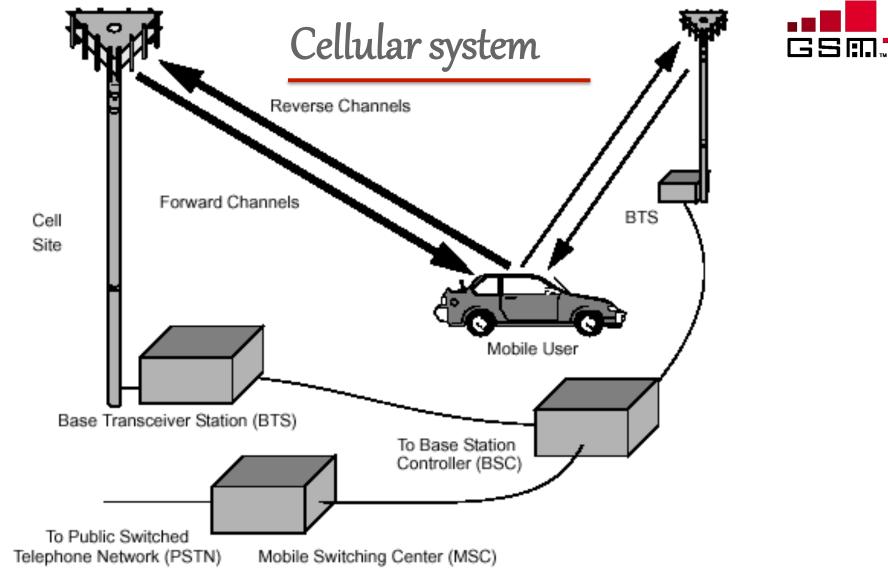
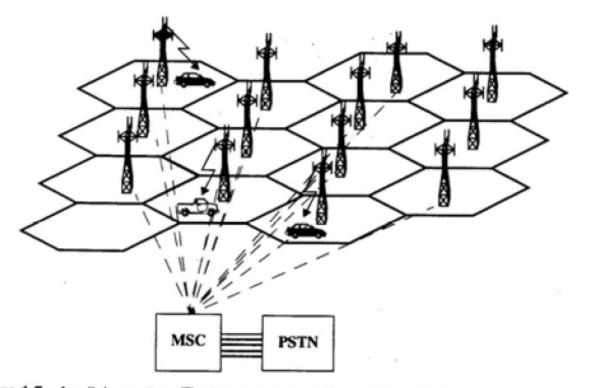
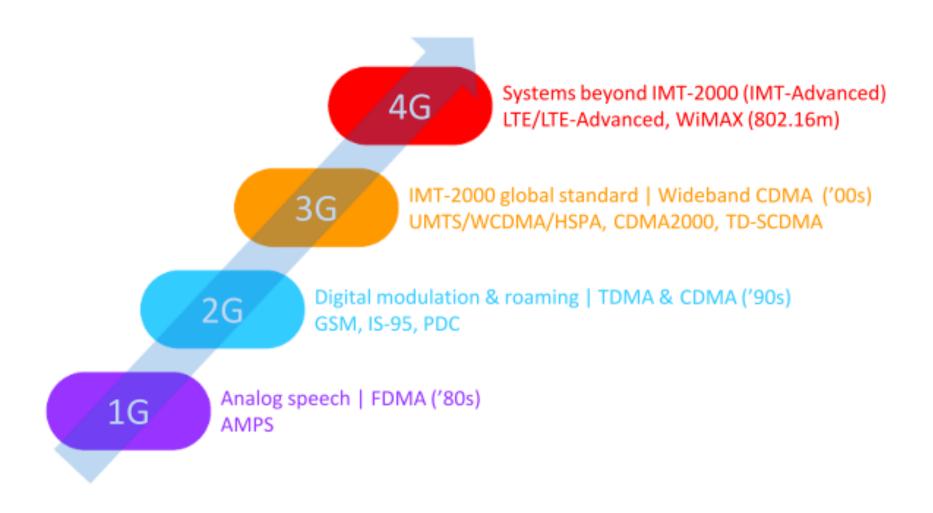


Figure 1–3 There are two main types of forward channels. Control and access channels are used to set up calls and provide security and management functions. Traffic channels are used to carry voice traffic. The reverse channels are also divided into access channels and traffic channels. In some systems, the Base Station Controller (BSC) may be integrated directly into the cell site. In other systems, as shown here, the Base Transceiver Stations (BTSs) are connected to a Base Station Controller.




Figure 1.5 A cellular system. The towers represent base stations which provide radio access between mobile users and the mobile switching center (MSC).

.

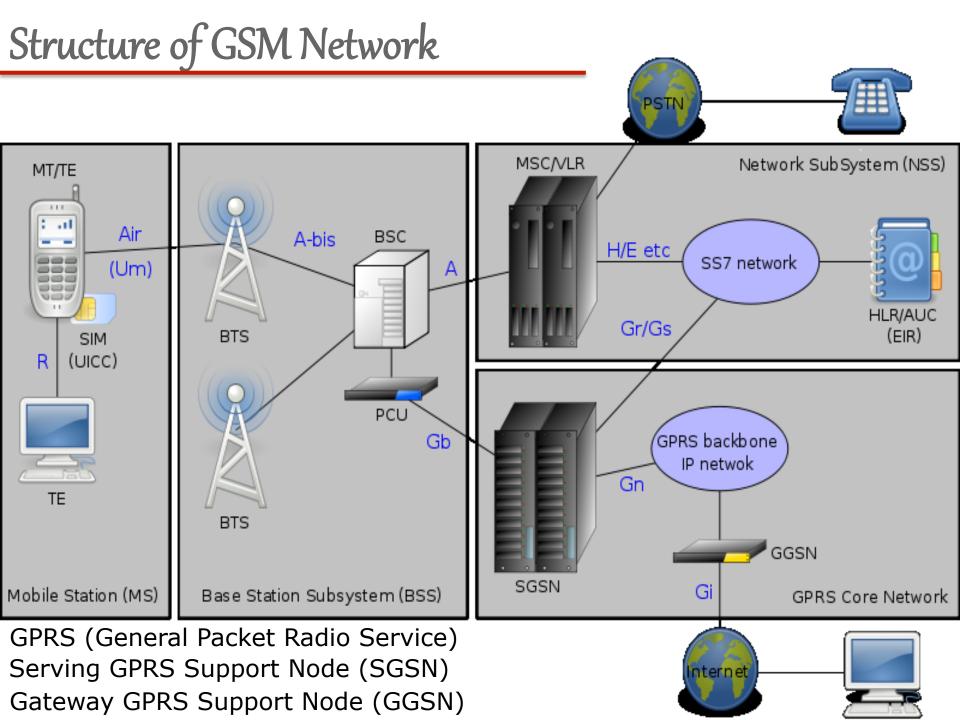
Evolution of Mobile Networks

	First Generation Systems	Second Generation Systems	Third Generation Systems
Time Frame	1984-1996	1996-2000	2000-2010
Services	Analog Mobile Telephony Voice Band Data	Digital voice, messaging	High speed data Broadband video Multimedia
Architecture	Macrocellular	Microcellular, Picocel- lular Wireless Local Loop	
Radio Technology	Analog FM, FDD- FDMA	Digital modulation, CDMA, TDMA using TDD and FDD	CDMA, possibly com- bined with TDMA, with TDD and FDD variants
Frequency Band	800 MHz	800+1900 MHz	2 GHz+
Examples	AMPS TACS ETACS NMT450/900 NTT JTACS/NTACS	cdmaOne (IS-95) GSM/DCS-1900 US TDMA IS-136 PACS PHS	cdma2000 WCDMA
	JIACONIACO		By: Dr.Mo

Cellular system Evolution

20 • 1G (Early 1980s)

- Analog speech communications.
- Analog FDMA.
- Ex: AMPS


2G (Early 1990s)

- Digital modulation of speech communications.
- Advanced security and roaming.
- TDMA and narrowband CDMA.
- Ex: GSM, IS-95 (cdmaOne), and PDC
- 3G (Late 1990s)
 - Global harmonization and roaming.
 - Wideband CDMA
 - Ex: UMTS, cdma2000, and TD-SCDMA

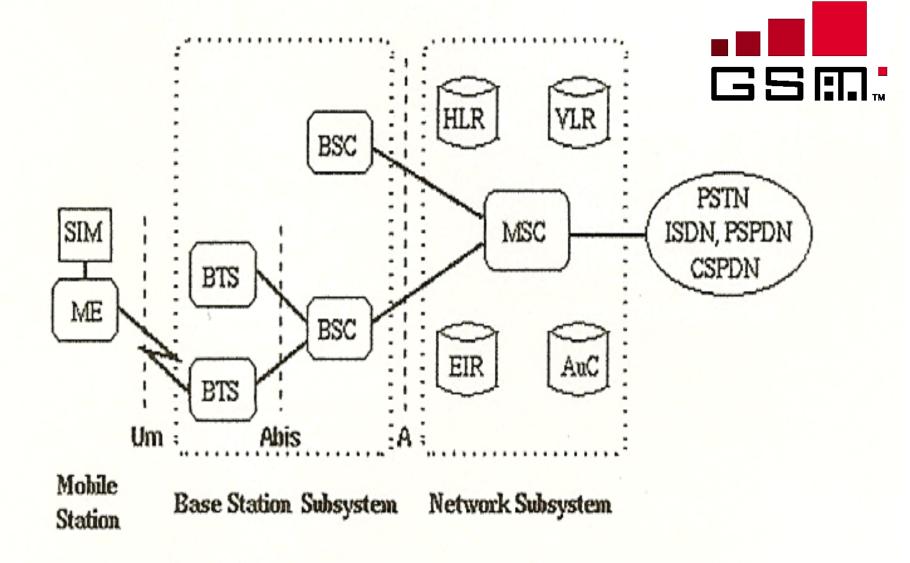
• 2.5G – GPRS (General Packet Radio Service)

- 2.75G- Enhanced Data Rates for GSM Evolution (EDGE)
- 3.5G- High Speed Downlink Packet Access (HSDPA)
- 3.75G- High Speed Uplink Packet Access (HSUPA)
- 3.9G- Evolved High Speed Packet Access (HSPA+)

Generation	Frequency	Definition	throughput	Technology
1G (1981-1996)	800-900 MHz (BW = 30 kHz)	Analog (FM) Voice	14.4 Kbps (peak)	AMPS, NMT, TACS ETACS
2G (1996-2000)	900/1800 MHz 850/1900 MHz (BW = 200KH)	Digital Narrowband Circuit Switching Data Voice Messaging (SMS)	9.6 / 14 Kbps	GSM/DCS - 1900 TDMA(IS-136) CDMA (IS95- CDMA-one)
2.5G, 2.75G		Packet Switching Data WAP +MMS	56 kbit/s up to 115 kbit/s	GPRS, EDGE
3G (2001-2010) (wideband- Global)	2GHz + 1920 -2170MHz (BW=5MHz)	Digital Broadband Packet Switching Data (High speed data Multimedia)	3.1 Mbps (Peak) 500-700 Kbps	CDMA2000 (Verizon, Sprint) UMTS, WCDMA (AT&T, T-Mobile+ Europe)
3.5G 3.75G		>2 Mbps	14.4 Mbps (peak) 1-3 Mbps 42 Mbps (peak)& 28 Mbps 2x2 MIMO 672 Mbps	HSPA: HSDPA, HSUPA
4G (2012+) (Broadband) 5G=Gigabit	LTE (3GPP) LTE-A (3GPP2)	Digital Broadband All IP (voice +data) Very High	100-300 Mbps (peak) 100 -1000 Mbps (peak) 3-5 Mbps	LTE (WCDMA) Mobile WIMAX, IEEE802.16 (d,e,m) UBM (IP networks)

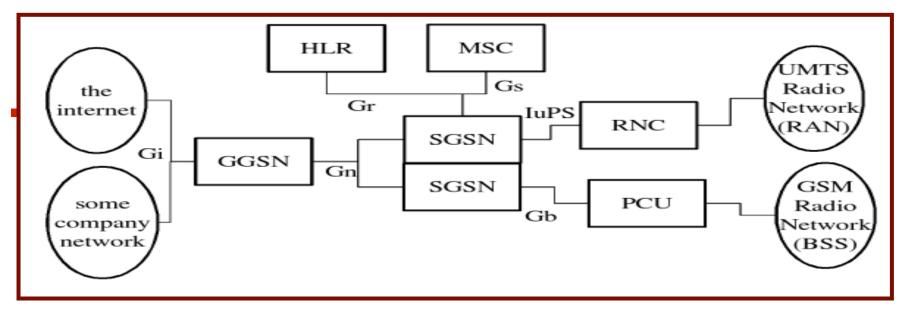
System Architecture

Mobile Station (MS)

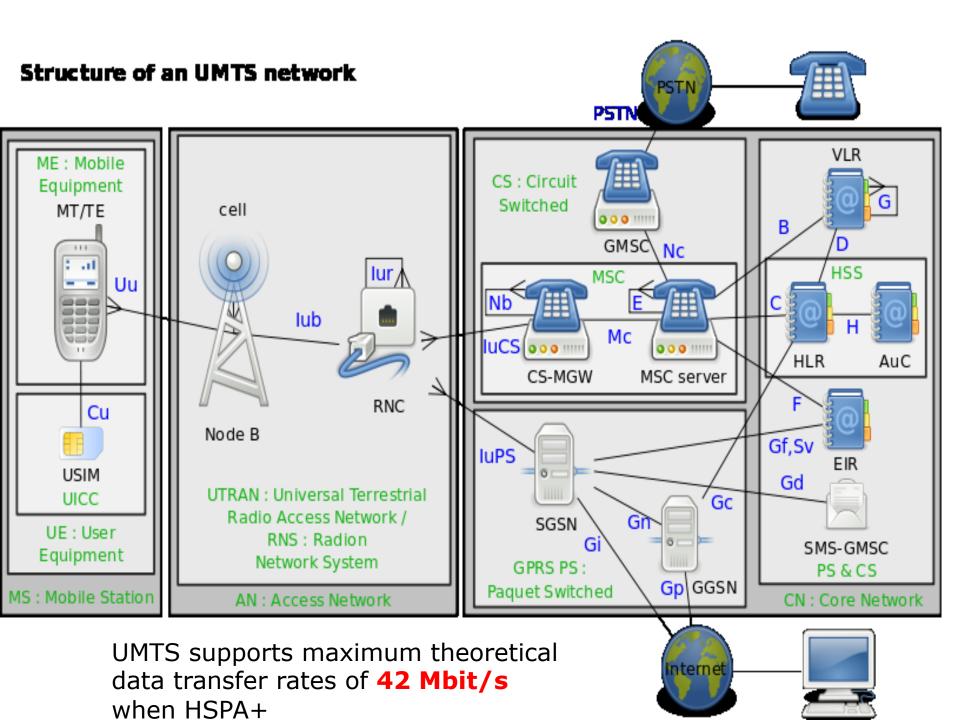

Mobile Equipment (ME) Subscriber Identity Module (SIM)

Base Station Subsystem (BBS)

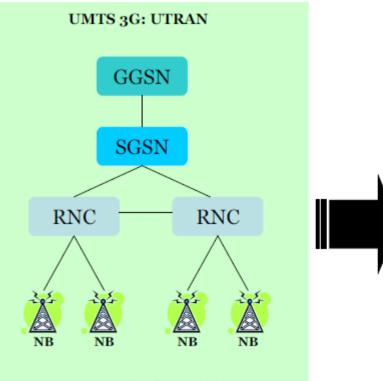
Base Transceiver Station (BTS) Base Station Controller (BSC)


Network Subsystem

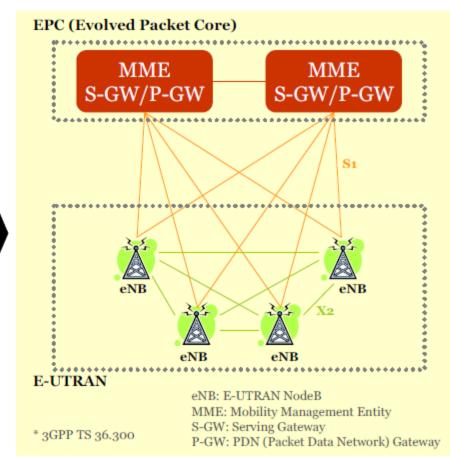
Mobile Switching Center (MSC) Home Location Register (HLR) Visitor Location Register (VLR) Authentication Center (AUC) Equipment Identity Register (EIR)


SIM Subscriber Identity Module ME Mobile Equipment BTS Base Transceiver Station BSC Base Station Controller HLR Home Location Register VLR Visitor Location Register

MSC Mobile services Switching Center EIR Equipment Identity Register AuC Authentication Center


The GPRS core network is the central part which allows 2G, 3G and WCDMA mobile networks to transmit IP packets to external networks such as the Internet provides mobility management, session management and transport for Internet Protocol packet services in GSM and WCDMA networks. Gateway GPRS Support Node (GGSN): is responsible for the interworking between the GPRS network and external packet switched networks Serving GPRS Support Node (SGSN): is responsible for the delivery of data packets from and to the mobile stations within its geographical service area. Packet control unit: The allocation of channels between voice and data is controlled by the base station, but once a channel is allocated to the PCU, the PCU takes full control over that channel. The Radio Network Controller (or RNC): is a governing element in the UMTS radio access network (UTRAN) and is responsible for

controlling the Node Bs that are connected to it..

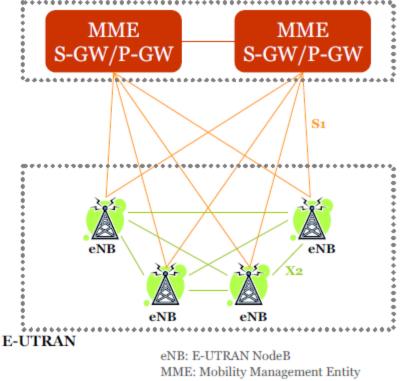


LTE Network Architecture

• E-UTRAN (Evolved Universal Terrestrial Radio Access Network)

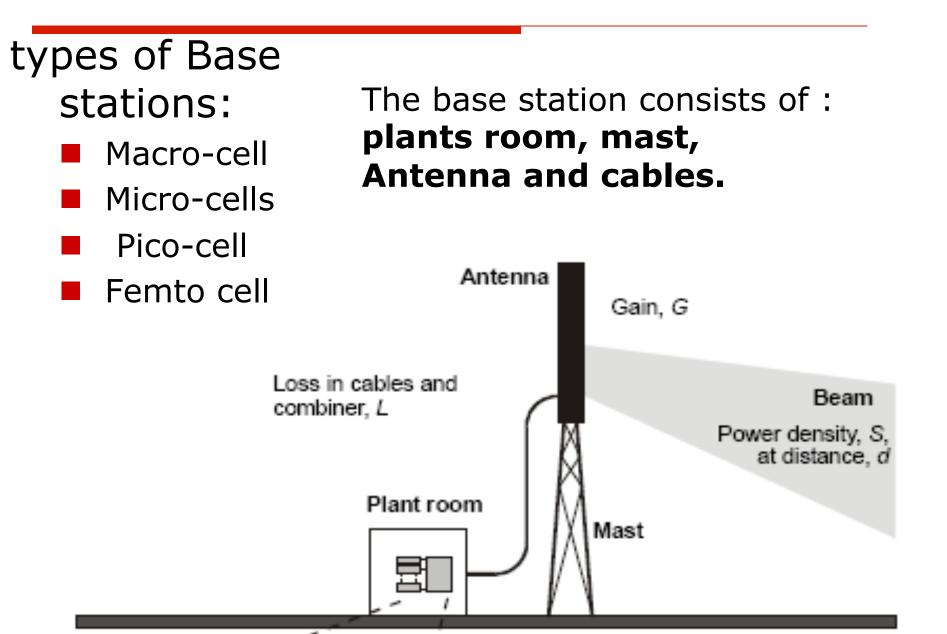
NB: NodeB (base station) RNC: Radio Network Controller SGSN: Serving GPRS Support Node GGSN: Gateway GPRS Support Node

LTE Network Architecture

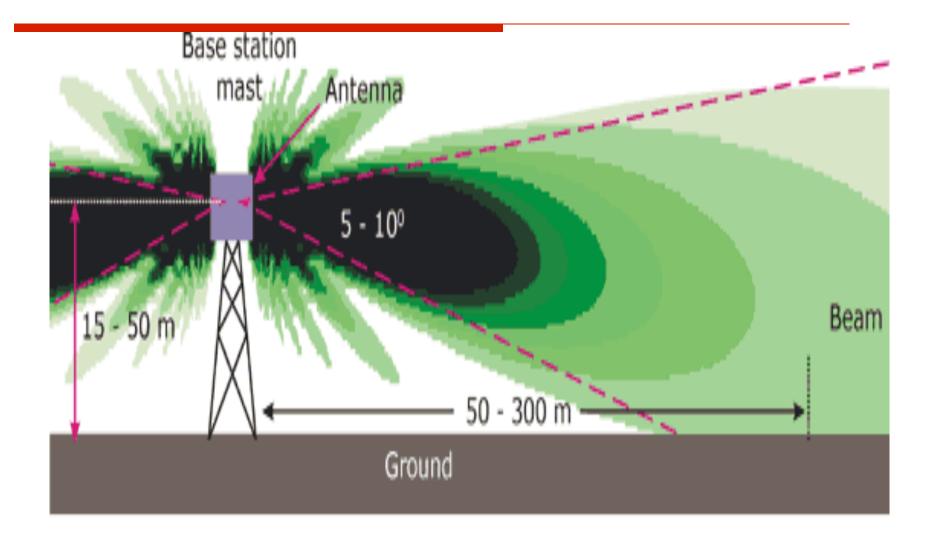

• eNB

 All radio interface-related functions

MME


- Manages mobility, UE identity, and security parameters.
- S-GW
 - Node that terminates the interface towards E-UTRAN.
- P-GW
 - Node that terminates the interface towards PDN.

EPC (Evolved Packet Core)



* 3GPP TS 36.300

MME: Mobility Management Entity S-GW: Serving Gateway P-GW: PDN (Packet Data Network) Gateway Types and Structure of Base Station

RF Beamfrom the Base Station

Base Station Antenna 1800 MHz PCS & GSM (Sectored cells)

Frequency Range	1710-1990 MHz
Bandwidth	170 MHz
Gain	12.5 dBi
VSWR	≤ 1.5
Nominal Impedance	50 ohm
Polarization	Vertical
Maximum Power	100 W
Connector	N Female
3dB Beamwidth Horizontal Plane	120°
3dB Beamwidth Vertical Plane	16°
F/B	> 25 dB
Dimension	$600 \times 100 \times 80 \text{ mm}$
Weight	6 kg / 13.23 lb

Main characteristics of a GSM hand-held terminal transmitter

	GSM 900	DCS 1800
Frequency band	890 – 915 MHz	1710 – 1785 MHz
Channel width	200 kHz	200 kHz
Peak radiated power	2 W	1 W
Multiple access technique	FDMA + TDMA	FDMA + TDMA
Modulation scheme	GMSK	GMSK
Maximum average radiated power	250 mW	125 mW

Main characteristics of a GSM base-station transmitter

	GSM 900	DCS 1800
Frequency band	935 – 960 MHz	1805 – 1880 MHz
Channel width	200 kHz	200 kHz
Peak radiated power (typical)	30 W	30 W
Multiple access technique	FDMA + TDMA	FDMA + TDMA
Modulation scheme	GMSK	GMSK

antenna in <u>Mexico City</u>, <u>Mexico</u>. There are three antennas: each serves a 120-degree segment of the horizon.

Two <u>GSM</u> <u>base</u> <u>stations</u> <u>disguised</u> <u>trees</u> <u>Dublin</u>, <u>Ireland</u> 492 F High Point Road in Gaffney, South Carolina.

ri til

6月1月月

Cell tower disguised as a palm tree in Tucson, Arizona

The Beginning

Dyna-Tac

Popular Science

THE WhatsNew MAGAZINE

Detroit Hot Line – WHAT'S COMING IN THE '74 CARS

INGENIOUS INVENTIONS From New York's

How Science Is Solving THE MYSTERIES OF THE NORTHERN LIGHTS

What's the "Best" Color for Your Car?

Amazing New Alternator Delivers 60-Cycle Power Over a Wide Range of RPM's

DRIVABILITY PROBLEMS? How to Troubleshoot Your Car's Emission Controls

NEW TAKE-ALONG TELEPHONES Give You Pushbutton Calling to Any Phone Number

lighted affehane, only ng harra hare wich terms beyonderth this phote star said place and reasons sails any where with new system Plase at right shows coverage of Sew York and the Verband large demost and reto hence care to and rare partable phones Citywide redwork, woold rived rafis dverigh company lead a sector a atartics: Cantral compet-or could be perturbed ta telephone exchange Photo Courses

New Take-Along Telephones Give You Pushbutton Calling to Any Number

This amazing phone system could handle thousands of calls simultaneously, patching yours directly into a phone exchange

By JOHN R. FREE ALLETRATIONS OF THEALET/BUONDCONCETURES

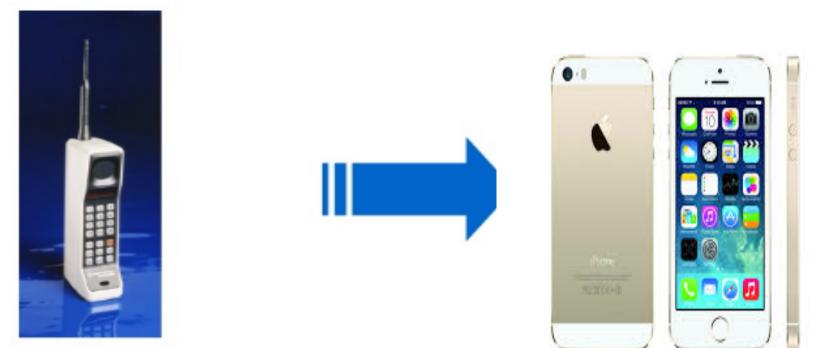
Ministrogrador wand to track and rules dynamic calls is discribed to earther by project weighteens (split, Computer directs calls into phone exchange,

80 POPULAR DODAGE

The rathe pashed the pertain phrane's our-score latter. For a spin second, the biophones—a new two pertained of the second pathetics, they are tapped the pathetics they communications. Deviments of the sould be tabuted.

Motomity for constantiant Devition was demonstrating the Dynamic prediction in a New Tool. If the perturbation is a New Tool. If the perturbation is a final the state perturbation of the state of the state module signal. Denotes the perpansion the module signal. Denotes the perpansion the state of perturbation of the state of the tight of the state of the state of the state of the life and perturbation of the state of the state

With Pediceal Communications Commission approval, the Irol Dytable system may be operating in New York by 1978. Using antipped Impagements along the mHz, it would tare a simplex computer controllar



tenarities and mexicor actively (an in plate and disavings) for Dromands of almittaneous orthogocalls, Today's barls and balance have all 200 with and balance have finance to a few disercalls at one time in major allow. "In a dity where the Drombe cost

"In a city where the Dyname autern is pisabled," says John Michell, denotes general meanage, "2 will be possible to make telephone onth while telleg in a tool, willing doors the city's strength, sitting in a restances, ar anowhere the a radio signal can meach.

"We super: there'll be heavy usage by which obvec superpotential nearest, journalists, diction, housevisions with staffy anyone who reach or wants twisphere concentrational the phrases are nervealistic." Mindell quid You wanth out nerve has greate a probable, but wanth base it from a common carmer—Motanti, a phrase or suffic company. To find on how Downline works.

Handsets Evolution (from the brick to the slick)

1983: Motorola DynaTAC 8000X

World's first handheld cellular phone call in public

On April 3, 1973, Motorola installed a base station to handle the first public demonstration of a phone call over the cellular network

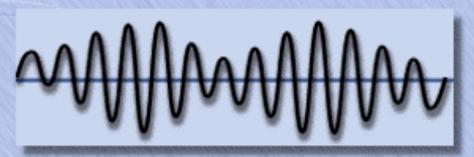
Cooper and Motorola took the cellular phone technology to <u>New</u> <u>York</u> to demonstrate it to reporters and the public, standing on **Sixth Avenue** in New York City near the New York Hilton hotel, Cooper made a phone call from a prototype **Dyna-Tac** handheld cellular phone before going to a press conference upstairs in the Mobile phone systems Evolution (the road to 4Gand What is LTE?)

2012: The year LTE becomes a standard, not a luxury_{G LTE}. The fastest cellular network.

What is LTE?

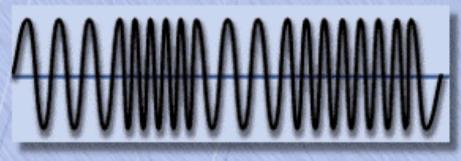
Wifi+ 4G

Fundamental Constraints

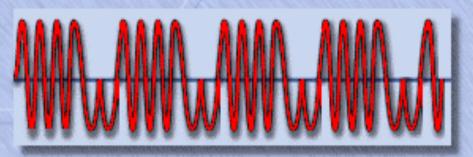

- Shannon's capacity upper bound
 - Achievable data rate is fundamentally limited by bandwidth and signal -to-noise ratio (SNR).

$$C = BW \cdot \log_2 \left(1 + \frac{S}{N}\right) \text{[bits per second]}$$

$$C = BW \cdot \log_2 \left(1 + \frac{S}{N}\right) \text{[bits per second]}$$


$$\eta = \frac{\text{Transmission Rate}}{\text{Channel Bandwidth }W} \text{ [bits/s/Hz]}.$$

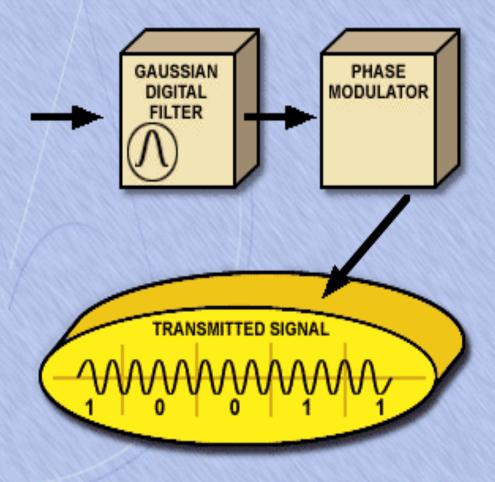
PSK requires too wide a bandwidth



AMPLITUDE MODULATION

 Gaussian Minimum Shift Keying (GMSK) is actually used on the GSM air interface

FREQUENCY MODULATION

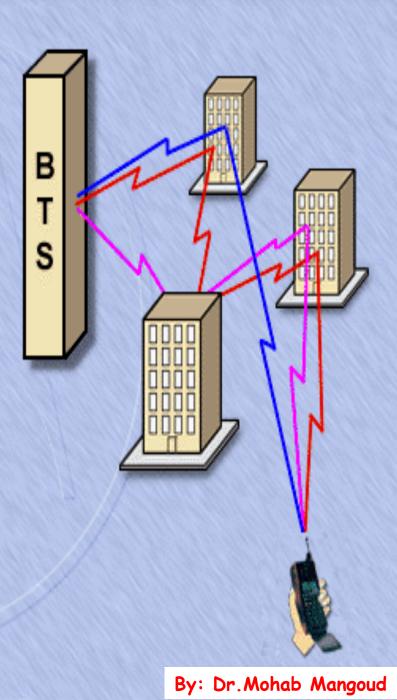


PHASE SHIFT KEYING (PSK)

By: Dr. Mohab Mangoud

Gaussian Minimum Shift Keying:

- Digital signal filtered through a Gaussian Filter
- Filtering distorts the signal, rounding off the corners and removing abrupt phase changes
- Distorted signal is used to phase shift the carrier signal
- Phase change occurs over a period of time
- Frequency components are lowered, reducing the bandwidth requirement



MULTIPATH FADING

 Signals travel from transmitter to receiver by different routes and experience time dispersion

 Signals combine again at receiver, constructively or destructively

) Combined signal strength also changes when receiver moving

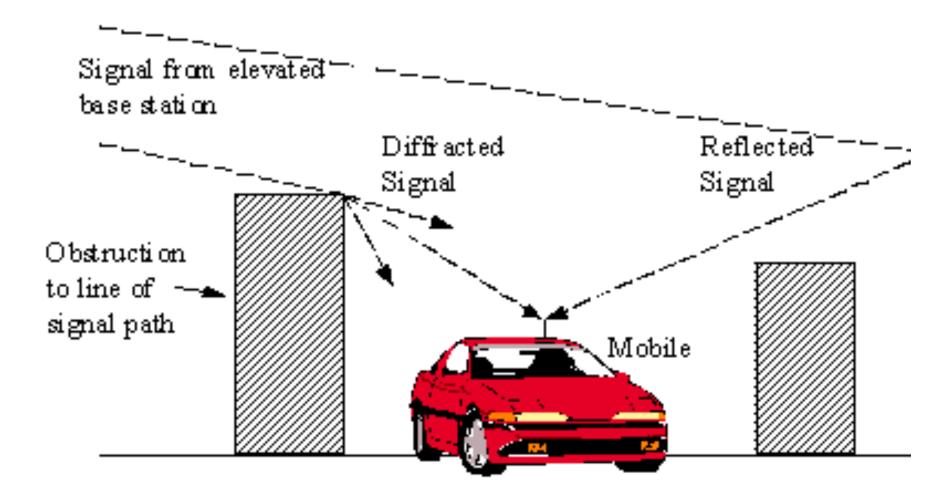
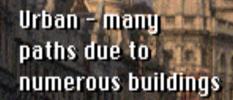
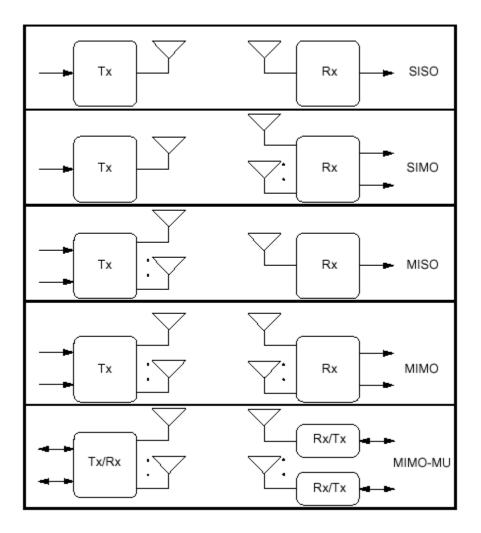



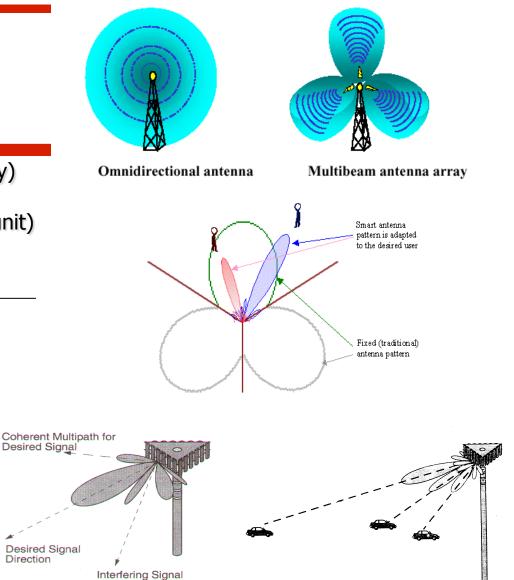
Figure 2 Radio Propagation Effects


GSM combats multipath fading with:

- Equalisation
- Diversity
- Frequency Hopping
- Interleaving
- Channel Coding

Hilly - few paths due to open terrain

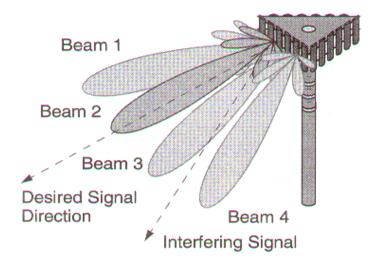
By: Dr. Mohab Mangoud


SISO: Single input Single output SIMO: Single input Multiple output MISO: Multiple input Single output MIMO: Multiple input Multiple output (multius: By: Dr.Mohab Mangoud

Smart antennas & Beamforming

- •Traditional cellular systems
- •Idea of smart antenna
- It consists of
- a number of radiating elements (antenna array)
- a combining/dividing network (Beamforming unit)
- control unit, realized using DSP

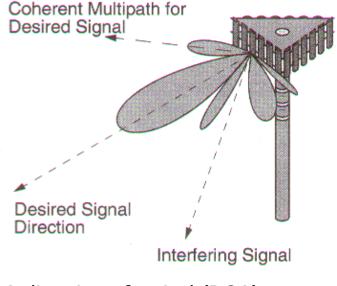
Beamforming


- to increase the system capacity and to increase the signal quality (system performance
- to avoid problems associated with multipath

By: Dr. Mohab Mangoud

Types of Smart Antennas

Switched-Beam Antennas



•Disadvantages:

Signal strength degradation

The desired signal and interfering signals can not be distinguished (Reduced S/N)

Adaptive-Array Antennas

•A direction of arrival (DOA) algorithm for determining signal direction & interference sources is needed.

•The beam pattern is adapted (steered) based on changed in both the desired and interfering signal locations. By: Dr. Mohab Mangoud