Week 5 — Part I.

Lecture # 5

Signal-Space Analysis

For Digital Modulation
Techniqgues
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Figure 5.1 Block diagram of a generic digital
communication system.



Consider the most basic form of a digital communication system depicted in Figure 5.1,
Al message source fmits one [symbol every T scconds] with the symbols belonging to an
alpnabet of M symbols|denoted by 711, iy, . .., 1myy.| Consider, for example, the remote
connection of two digital computers, with one computer acting as an information source
that calculates digital outputs based on observations and inputs fed into it. The resulting
computer output 1s expressed as a sequence of s and 15, which are transmitted to a second
computer over a communication channel, In this case, the alphabet consists simply of two
binary symbols: 0 and 1. A second example is that of quaternary PCM encoder with an
alphabet consisting of four possible symbols: 00, 01, 10, and 1] In any event, the g m

rprobabrhﬁcs DL P2+~ - Dy SPECity the message source output, In the absence of prior
Information, 1t 15 customary to assume that the M symbols of the alphabet are egually

likely. Then we may expres1 the probability that symbol m; |s emitted by the source as
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likely. Then we may express the probability that symbol s, is emitted by the source as

p; = P(m,)
1f | (5.1)
=" ort=1,2,...,. M

The transmitter takes the message source output m; and codes it into a distinct signal s, (t)
suitable for transmission over the channel, The signal s;(z) occupies the full duration T
allotted to symbol m,. Most important, s(#) is a real-valued energy signal (i.e., a signal
with finite energy), as shown by

T
E, = J; siipad, i=1,2....M (5.2)
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The channel is assumed to have two characteristics:

1. The channel is Jinear, with a bandwidth that is wide enough to accommodate th,
transmission of signal s;(t) with negligible or no distortion.

2. The channel noise, #/(t), is the sample function of a zero-mean white Gc:'msiaﬂ Hoise
process. The reasons for this second assumption are that it makf:s receiver j‘-ﬂkula~
tions tractable, and it is a reasonable description of the type of noise present in mapy
practical communication systems.



We refer to such a channel as an additive white Gaussian noise {AWGN} channel, Ac.
cordingly, we may express the received signal x(t) as

0=t=T

x(t) = si{t) + wlt), L=1JVHPM (5.3

Transmitted Received
signal signal

5;(1) x(t)
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White Gaussian noise

w(z)

Figure 5.2 Additive white Gaussian noise (AWGN) model of a channel.
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The receiver has the task of ﬂhlr:iserving the received signal x(z) for a duratif:m of T
seconds and making a best estimate of the transmitted signalis,- (t) ot, equwa!lentljr, the
symbol m,. However, owing to the presence of channel noise, this dec:sml}-makmg process
is statistical in nature, with the result that the receiver will make occasional errors. The
requirement is therefore to design the receiver so as to minimize the average probability
of symbol error, defined as

M

P, = > p; Pl + m; |m) (5.4)

=1

where 1, is the transmitted symbol, # is the estimate prﬂduc_ed by the receiver, and
P(#: # m; |m;) is the conditional error probability given that the ﬂ:h symbol was sent. The
resulting receiver is said to be|optimum in the minimum probability of ermrlsense._

This model provides a basis for the design of the optimuimn rece.iver, OT .
will use geometric representation of the known set of trans:nutted. mgnals,: {s;(O} T_hls
method, discussed in Section 5.2, provides a great deal of insight, with considerable sim-
plification of detail.




Geometric Representation of Signals



Geometric Representation of Modulation Signals

The essence of geometric representation of signals® is to represent any set of M energy
signals {s;(¢)} as linear combinations of N orthonormial bascis functions, where N < M.

That is to say, given a set of real-valued energy signals si(£), salt), . .., snlt), each of
duration T seconds, we write ‘

N 0=<t=T
s;{t) = g,l;f#f{ﬂ: {i' —1,2,.... M (5.5)

where the coefficients of the expésicn are defined by

r f=1,2,...,M
<EE;L“QMEEE> {;=12.” N (5.6)

The real-valued basis functions| ¢ (¢}, ¢(t), ..., dnlt) are orthonormal by which we
inean

T o [tifi=
|, atrie de = 5, = {0 i (5.7)

where 8;; is the Kronecker delta. The first condition of Equation (5.7) states that each basis
function is mormalized to have unit energy. The second condition states that the basis
functions &4(2), ¢a(t), . .., dnlt) are orthogonal with respect to each other over the in-
terval 0 =t = T. |




Accordingly, we may state that each signal in the sis completely determineg

by the vector of its coefficients

s=|.1| i=12,...,.M (5.8)

| SiN

The vectors; is called a signal vector.|Furthermore, if we conceptually )
tional notion of two- and three-dimensional Euclidean spaces to an |N-dimensional E

clidean space,)we may visualize the set of signal vectors {s;[¢ = 1,2, ..., M} as defining

a corresponding set of M points in an N-dimensional Euclidean space, with N mutually

perpendicular axes labeled ¢, ¢, . . . , dn. This N-dimensional Euclidean space is called
] '
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FIGURE 5.2 (a) Synthesizer for generating the signal s,(t). (b) Analyzer for generating the set of
signal vectors {s;}.

the_engrgy of a signal s;(t) is equal to the squared*length of the signal‘vectcrmr 5;{1)

Pyt
E, = > s%
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Figure 5.4 NS :
lllustrating the geometric | | | | | |
representation of signals for the case —= - °© 1 2! 3
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The idea of visualizing a set of energy signals geometrically, as just described, is of
profound importance. It provides the mathematical basis for the geometric representation
of energy signals, thereby paving the way for the noise analysis of digital communication
systems in a conceptually satisfying manner. This form of representation is illustrated in
Figure 5.4 for the case of a two-dimensional signal space with three signals, thatis, N =2
and M = 3,

In an N-dimensional Euclidean space, we may define lengths of vectors and angles

between vectors. It is customary to dengte the length (also called the|absolute value or

norm) of a signal vector s;|by the symbul The squared-length of any signal vector s,
is defined to be the inner product or dot product of s, with itself, as shown by

['s: 1% = ss;

™
=>s2 i=12...,M

f=1

(5.9)

where s is the jth element of s,, and the superscript T denotes matrix transposition.



There is an interesting relationship between the energy content of a signal and its
representation as a vector. By definition, the energy of a signal s;(¢) of duration T seconds
is

E = J‘D sH(t) dt (5.10)

Therefore, substituting Equation (5.5) into (3.10), we get

E = f: [i ,,c#,(tl][i sak‘r{“km-I




Intcrchanging the order of summation and integration, and then rearranging terms, we get

N N T . .
E=3 Y s | atomnde (5.11)

But since the ¢;(¢) form an orthonormal set, in accordance with the two conditions of
Equation (5.7), we find that Equation {5.11) reduces simply to

')
= (5.12)
= |s]*

Thus Equations {5.9) and (5.12) show that the energy of a signal s;(t) is equal to the
squared length of the signal vector s;{t) representing it.

In the case of a pair of signals s;(t) and s, (2), represented by the signal vectors s; and
s, respectively, we may also show that

L S;Eﬂﬁ&{t} dt = S:.ISIE {5.13]

Equation (5.13} states that the inner product of the signals s,{t) and s (¢) over the interval
[0, T], using their time-domain representations, is equal to the inner product of their
respective vector representations s, and s;. Note that the inner producr of s;(¢) and s, (¢} is
invariant to the choice of basis functions (¢;(¢)};X, in that it only depends on the compo-
nents of the signals s;(#) and s, (¢} projected onto each of the basis functions.



5.3 Conversion of the Continuous
AWGN Channel into a Vector Channel

5.5 Coherent Detection of Signals in Noise:
Maximum Likelihood Decoding
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Figure 5.3 (a) Synthesizer for generating the signal s;(t).
(b) Analyzer for generating the set of signal vectors {s; ..
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5.3 Conversion of the Continuous
AWGN Channel into a Vector Channel

Suppose that the input to the bank of N product integrators or correlators in Figure § 35
is not the transmitted signal s;(t) but rather the received signal x(t) defined in accordang,

with the idealized AWGN channel of Figure 5.2. That 1s to say,

0D=t=T
i=1,2,..., M

x(t) = s;(t) + wit), {

(5.28)

where w(t) is a sample function of a white Gaussian noise process W(t) of zero mean apg
power spectral density No/2. Correspondingly, we find that the output of correlator j, say,

is the sample value of a random variable X;, as shown by

T
x; = J x{t)dt)dt

0

2sfi+wj: i=1’2:11r3N

(3.29)

The first component, s;;, is a deterministic quantity contributed by the transmitted signa|

s;(t); it is defined by

T
Sy = J’L‘l Sﬁ(f)iilf(t)df

(5.30)

The second component, w, is the sample value of a random variable W, that arises because

of the presence of the channel poise wit); it is defined by

w; = _L wit)o,(t)dt

(5.31)



5.5 Coherent Detection of Signals in Noise:
Maximum Likelihood Decoding

Suppose that

o each time slot of duration T seconds, lone of the M possible signals s:('

$5(t), . .., Sy(t) is transmitted with equal probability, 1/M. For geometric signal represelt

tation, the signal §;{t),i = 1,2,.. ., Ml is applied to a bank of correlators, with a commo?

input and supplied wit

correlator outputs define tl

) an appropriate set of N orthonormal basis functions. The resultic
¢ signal vector s;. {Since knowledge of the signal vector §; 8
good as knowing the transmitted signal s; ] itsels, and vice versa, we may represent s

Tt
U

by a point in a Euclidean space of dimension N = M. We refer to this point s the rat
miiied sighal pomi or message pomi, 1he set of message points corresponding to the set

of transmitted signals [s,—(t)]?—%, fs called a signal constellation.
(1\;\ 7 ¢ ] signal constellation
1100 ,,‘/ }P /
R

(p)

Signal constellation for (a) M-ary PSK and (b)
corresponding M-ary QAM, for M =16.



However, the representation of the received signal x(z) is complicated by the presence
of additive noise w(t). We note that when the received signal x() is applied to the bank
of N correlators, the correlator outputs define the lobservation vector x} From Equation
(5.48), the vector x differs from the signal vector s, by thenofse vector wiwhose orientation
is completely random, The noise vector w is completely characterized by the noise wi?);

Now, based on the observation vector x, we may represent the received signal x(t)
by 2 point in the same Euclidean space used to represent the transmitted signal, We refer
to this second point as the|received signal point.|The received signal point wandets about
the message point in a completely random fashion, in the sense that it may lie anywhere
inside a| Gaussian-istributed “clong” centered on the message point. [This is illustrated in
Figute 5.74 for the case of a three-dimensional signal space. For a patticular realization
of the noise vector w (i.e.,  particular point inside the random cloud of Figure 5.74), the
relationship between the observation vector x and the signal vector s; is as illustrated in

Figure 5.7b.
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Figure 5.7 lllustrating the effect of noise perturbation, depicted in (a), on the location of the
received signal point, depicted in (b).

AWGN is
equivalent to an N-dimensional vector channel described by the observation vector

x=s+w, | i=1,2,...,M (5.48)




Example of samples of matched filter output for some
bandpass modulation schemes
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[graphical interpretation of the maximum [ikelihood decision |

rule. Let Z denote the N-dimensional space of all possible observation vectors x. We refer
to this space as the observation space. Because we have assumed that the decision rule
must say 1 = m,, wherei = 1,2, ..., M, the total observation space Z is correspondingly
partitioned into M-decision regions, denoted by Z,, Z,, . .., Zp. Accordingly, we may
restate the decision rule of Equation (5.55) as follows:

Observation vector x lies in region Z, if
the Fuclidean distance | x — s, | is minimum for & = § (3.59)

Equation (3.59) states that the maximum |ikelibood decision rule is simply to choose the
message pm'n; closest to the received signd point, which is intuitively satisfying,




| x — sz || is the Euclidean distance
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FIGURE 5.8 [Illustrating the partitioning of the observation space into decision regions for the
case when N = 2 and M = 4; it is assumed that the M transmitted symbols are equally likely,

M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal
energy, E, and equal probability.
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The correlation receiver consists of two parts :
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FiGURE 6.2 Functional model of passhand data transmission systent




| 5.6 Correlation Reci-hs_j_er

From the material presented in the previous sections, we find that for an AWGN chan
and for the case when the transmitted signals s,(z), 55, ..., sult) ate equally likely, the

| optimum receiver consists of two subsystems,(which are detailed in Figure 5.9 and s
scribed here:

1. The detector part of the receiver|is shown in Figare 5.92. It consists of a bank of M
product-ntegrators or correlators] supplied with a corresponding set of coherent
reference signals or orthonormal basis functions ¢;(f), ¢a(t)y .. ., dnlt) tha are
generated locally. This bank of correlators operates on the recenfed signal x(t)
0 <t = T, to produce the observation vector X,
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